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By the kindness of heaven,
O lovely faced one,
You stand before me,
The darkness of delusion dispelled,
By recollection of that which was lost.

Verse 7.22 of Kalidasa’s Sakuntala,
4th century A.D.



Preface

This is the second of approximately four volumes that the authors plan to
write in their examination of all the claims made by S. Ramanujan in The Lost
Notebook and Other Unpublished Papers. This volume, published by Narosa
in 1988, contains the “Lost Notebook,” which was discovered by the first
author in the spring of 1976 at the library of Trinity College, Cambridge.
Also included in this publication are other partial manuscripts, fragments,
and letters that Ramanujan wrote to G.H. Hardy from nursing homes during
1917–1919. The authors have attempted to organize this disparate material
in chapters. This second volume contains 16 chapters comprising 314 entries,
including some duplications and examples, with chapter totals ranging from
a high of fifty-four entries in Chapter 1 to a low of two entries in Chapter 12.
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Introduction

This volume is the second of approximately four volumes that the authors plan
to write on Ramanujan’s lost notebook. We broadly interpret “lost notebook”
to include all material published with Ramanujan’s original lost notebook by
Narosa in 1988 [244]. Thus, when we write that a certain entry is found in
the lost notebook, it may not actually be located in the original lost notebook
discovered by the first author in the spring of 1976 at Trinity College Library,
Cambridge, but instead may be in a manuscript, fragment, or a letter of
Ramanujan to G.H. Hardy published in [244]. We are attempting to arrange
all this disparate material into chapters for each of the proposed volumes. For
a history and general description of Ramanujan’s lost notebook, readers are
advised to read the introduction to our first book [31].

The Organization of Entries

With the statement of each entry from Ramanujan’s lost notebook, we pro-
vide the page number(s) in the lost notebook on which the entry can be
found. All of Ramanujan’s claims are given the designation “Entry.” Results
in this volume named theorems, corollaries, and lemmas are (unless other-
wise stated) not due to Ramanujan. We emphasize that Ramanujan’s claims
always have page numbers from the lost notebook attached to them. We re-
mark that in Chapter 9, which is devoted to establishing Ramanujan’s values
for an analogue λn of the classical Ramanujan–Weber class invariant Gn, we
have followed a slightly different convention. Indeed, we have listed all of Ra-
manujan’s values for λn in Entry 9.1.1 with the page number indicated. Later,
we establish these values as corollaries of theorems that we prove, and so we
record Ramanujan’s values of λn again, listing them as corollaries with page
numbers in the lost notebook attached to emphasize that these corollaries are
due to Ramanujan.

In view of the subject mentioned in the preceding paragraph, it may be
prudent to make a remark here about Ramanujan’s methods. As many read-

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 1, c© Springer Science+Business Media, LLC 2009
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ers are aware from the work of the authors and others who have attempted
to prove Ramanujan’s theorems, we frequently have few or no clues about
Ramanujan’s methods. Many of the proofs of the values for Gn that are given
in [57] are almost certainly not those found by Ramanujan, for he would have
needed knowledge of certain portions of mathematics that he likely did not
know or that had not been discovered yet. Similar remarks can be made about
our calculations of λn in Chapter 9. In the last half of the chapter, we employ
ideas that Ramanujan would not have known.

So that readers can more readily find where a certain entry from the lost
notebook is discussed, we place at the conclusion of each volume a Location
Guide indicating where entries can be found in that particular volume. Thus,
for example, if a reader wants to know whether a certain identity on page 1729
of the Narosa edition [244] can be found in a particular volume, she can turn
to this index and determine where in that volume identities on page 1729 are
discussed.

Following the Location Guide, we provide a Provenance indicating the
sources from which we have drawn in preparing significant portions of the
given chapters. We emphasize that in the Provenance we do not list all papers
in which results from a given chapter are established. For example, in Chapter
3, Ramanujan’s famous 1ψ1 summation theorem, which is found in more than
one version in the lost notebook, is discussed, but we do not refer to all papers
on the 1ψ1 summation formula in the Location Guide, although in Chapter 3
itself, we have attempted to cite all relevant proofs of this celebrated formula.
On the other hand, most chapters contain previously unpublished material.
For example, each of the first four chapters contains previously unpublished
proofs.

This Volume on the Lost Notebook

Two primary themes permeate our second volume on the lost notebook,
namely, q-series and Eisenstein series. The first seven chapters are devoted to
q-series identities from the core of the original lost notebook. These chapters
are followed by three chapters on identities for the classical theta functions or
related functions. The last six chapters feature Eisenstein series, with much
of the material originating in letters to Hardy that Ramanujan wrote from
Fitzroy House and Matlock House during his last two years in England. We
now briefly describe the contents of the sixteen chapters in this volume.

Heine’s transformations have long been central to the theory of basic hy-
pergeometric series. In Chapter 1, we examine several entries from the lost
notebook that have their roots in Heine’s first transformation or generaliza-
tions thereof. The Sears–Thomae transformation is also a staple in the theory
of basic hypergeometric series, and consequences of it form the content of
Chapter 2. In Chapter 3, we consider identities arising from certain bilateral
series identities, in particular the renowned 1ψ1 summation of Ramanujan and
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well-known identities due to W.N. Bailey. We have also placed in Chapter 3
some identities dependent upon the quintuple product identity. Watson’s q-
analogue of Whipple’s theorem and two additional theorems of Bailey are the
main ingredients for the proofs in Chapter 4 on well-poised series. Bailey’s
lemma is utilized to prove some identities in Chapter 5. Chapter 6, on partial
theta functions, is one of the more difficult chapters in this volume. Chapter
7 contains entries from the lost notebook that are even more difficult to prove
than those in Chapter 6. The entries in this chapter do not fall into any par-
ticular categories and bear further study, because several of them likely have
yet-to-be discovered ramifications.

Theta functions frequently appear in identities in the first seven chapters.
However, in Chapters 8–10, theta functions are the focus. Chapter 8 is devoted
to theta function identities. Chapter 9 focuses on one page in the lost notebook
on values of an analogue of the classical Ramanujan–Weber class invariants.
The identities in Chapter 10 do not fit in any of the previous chapters and
are among the most unusual identities we have seen in Ramanujan’s work.

As remarked above, the last six chapters in this volume feature Eisen-
stein series. Perhaps the most important chapter is Chapter 11, which con-
tains proofs of results sent to Hardy from nursing homes, probably in 1918.
In these letters, Ramanujan offered formulas for the coefficients of certain
quotients of Eisenstein series that are analogous to the Hardy–Ramanujan–
Rademacher series representation for the partition function p(n). The claims
in these letters continue the work found in Hardy and Ramanujan’s last joint
paper [177], [242, pp. 310–321]. Chapter 12 relates technical material on the
number of terms that one needs to take from the aforementioned series in
order to determine these coefficients precisely. In Chapter 13, the focus shifts
to identities for Eisenstein series involving the Dedekind eta function. Chap-
ter 14 gives formulas for certain series associated with the pentagonal number
theorem in terms of Ramanujan’s Eisenstein series P , Q, and R. These results
are found on two pages of the lost notebook, and, although not deep, have
recently generated several further papers. Chapter 15 is devoted primarily to
a single page in the lost notebook demonstrating how Ramanujan employed
Eisenstein series to approximate π. Three series for 1/π found in Ramanujan’s
epic paper [239], [242, pp. 23–39] are also found on page 370 of [244], and so
it seems appropriate to prove them in this chapter, especially since, perhaps
more so than other authors, we follow Ramanujan’s hint in [239] and use
Eisenstein series to establish these series representations for 1/π. This volume
concludes with a few miscellaneous results on Eisenstein series in Chapter 16.
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1

The Heine Transformation

1.1 Introduction

E. Heine [178], [179, pp. 97–125] was the first to generalize Gauss’s hyperge-
ometric series to q-hypergeometric series by defining, for |q| < 1,

2φ1

(
a, b
c

; q, t
)

:=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
tn, (1.1.1)

where |t| < 1 and where, for each nonnegative integer n,

(a)n = (a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), (1.1.2)

with the convention that (a)0 = (a; q)0 := 1. If an entry and its proof involve
only the base q and no confusion would arise, we use the notation at the left in
(1.1.2) and (1.1.4) below. If more than one base occurs in an entry and/or its
proof, e.g., both q and q2 appear, then we use the second notation in (1.1.2)
and (1.1.4). Ramanujan’s central theorem is a transformation for this series,
now known as the Heine transformation, namely [179, p. 106, equation (50)],

2φ1

(
a, b
c

; q, t
)

=
(b; q)∞(at; q)∞
(c; q)∞(t; q)∞

2φ1

(
c/b, t
at

; q, b
)

, (1.1.3)

where |t|, |b| < 1 and where

(a)∞ = (a; q)∞ = lim
n→∞

(a; q)n, |q| < 1. (1.1.4)

His method of proof was surely known to Ramanujan, who recorded an equiv-
alent formulation of (1.1.3) in Entry 6 of Chapter 16 in his second notebook
[243], [54, p. 15]. Furthermore, numerous related identities can be proved using
Heine’s original idea.

In Section 1.2, we prove several basic formulas based on Heine’s method.
In the remainder of the chapter we deduce 53 formulas found in the lost

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 2, c© Springer Science+Business Media, LLC 2009
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notebook. In some instances, we call upon a result not listed in Section 1.2,
but each identity that we prove relies primarily on results in Section 1.2.

In order to keep our proofs to manageable lengths, we invoke certain stan-
dard simplifications (usually without mentioning them explicitly), such as

(−q; q)∞ =
1

(q; q2)∞
, (1.1.5)

(a; q)n(−a; q)n = (a2; q2)n, 0 ≤ n < ∞, (1.1.6)

(a; q)n =
(a; q)∞

(aqn; q)∞
, −∞ < n < ∞. (1.1.7)

The identity (1.1.5) is a famous theorem of Euler, which we invoke numerous
times in this book. Identity (1.1.7) can be regarded as the definition of (a; q)n

when n is a negative integer.

1.2 Heine’s Method

In [6], Heine’s method was encapsulated in a fundamental formula containing
ten independent variables and a nontrivial root of unity. As a result, it is an
almost unreadable formula. Consequently, we prove only special cases of this
result here. In light of the fact that many of these results are not easily written
in the notation (1.1.1) of q-hypergeometric series, we record all our results in
terms of infinite series. For further work connected with that of Andrews in
[6], see Z. Cao’s thesis [97] and a paper by W. Chu and W. Zhang [131].

We begin with a slightly generalized version of Heine’s transformation [6],
[7].

Theorem 1.2.1. If h is a positive integer, then, for |t|, |b| < 1,

∞∑
m=0

(a; qh)m(b; q)hm

(qh; qh)m(c; q)hm
tm =

(b; q)∞(at; qh)∞
(c; q)∞(t; qh)∞

∞∑
m=0

(c/b; q)m(t; qh)m

(q; q)m(at; qh)m
bm.

(1.2.1)

Proof. We need the q-binomial theorem given by [54, p. 14, Entry 2], [18,
p. 17, Theorem 2.1]

∞∑
m=0

(a/b; q)m

(q; q)m
bm =

(a; q)∞
(b; q)∞

, (1.2.2)

where |b| < 1. Since we frequently need two special cases in the sequel, we
state them here. If a = 0 in (1.2.2), then [18, p. 19, equation (2.2.5)]

∞∑
m=0

bm

(q; q)m
=

1
(b; q)∞

. (1.2.3)

Letting b → 0 in (1.2.2), we find that [18, p. 19, equation (2.2.6)]
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∞∑
m=0

(−a)mqm(m−1)/2

(q; q)m
= (a; q)∞. (1.2.4)

Upon two applications of (1.2.2), we see that

∞∑
n=0

(a; qh)n(b; q)hn

(qh; qh)n(c; q)hn
tn =

(b; q)∞
(c; q)∞

∞∑
n=0

(a; qh)n

(qh; qh)n

(cqhn; q)∞
(bqhn; q)∞

tn

=
(b; q)∞
(c; q)∞

∞∑
n=0

(a; qh)n

(qh; qh)n
tn

∞∑
m=0

(c/b; q)m

(q; q)m
bmqhmn

=
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)m

(q; q)m
bm

∞∑
n=0

(a; qh)n

(qh; qh)n
(tqhm)n

=
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)m

(q; q)m
bm (atqhm; qh)∞

(tqhm; qh)∞

=
(b; q)∞(at; qh)∞
(c; q)∞(t; qh)∞

∞∑
m=0

(c/b; q)m(t; qh)m

(q; q)m(at; qh)m
bm,

which is (1.2.1). ��

Heine’s transformation is the case h = 1 of Theorem 1.2.1, and Theorem
A3 of [6] is the case h = 2. The complete result appears in [7, Lemma 1].

The next result is more intricate, but it is based again on Heine’s idea; it
is Theorem A1 of [6].

Theorem 1.2.2. For |t|, |b| < 1,

∞∑
n=0

(a; q2)n(b; q)n

(q2; q2)n(c; q)n
tn =

(b; q)∞(at; q2)∞
(c; q)∞(t; q2)∞

∞∑
n=0

(c/b; q)2n(t; q2)n

(q; q)2n(at; q2)n
b2n (1.2.5)

+
(b; q)∞(atq; q2)∞
(c; q)∞(tq; q2)∞

∞∑
n=0

(c/b; q)2n+1(tq; q2)n

(q; q)2n+1(atq; q2)n
b2n+1.

Proof. Using (1.2.2) twice, we find that

∞∑
n=0

(a; q2)n(b; q)n

(q2; q2)n(c; q)n
tn =

(b; q)∞
(c; q)∞

∞∑
n=0

(a; q2)n

(q2; q2)n

(cqn; q)∞
(bqn; q)∞

tn

=
(b; q)∞
(c; q)∞

∞∑
n=0

(a; q2)n

(q2; q2)n
tn

∞∑
m=0

(c/b; q)m

(q; q)m
bmqmn

=
(b; q)∞
(c; q)∞

∞∑
n=0

(a; q2)n

(q2; q2)n
tn

{ ∞∑
m=0

(c/b; q)2m

(q; q)2m
b2mq2mn

+
∞∑

m=0

(c/b; q)2m+1

(q; q)2m+1
b2m+1q(2m+1)n

}
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=
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)2m

(q; q)2m
b2m

∞∑
n=0

(a; q2)n

(q2; q2)n
(tq2m)n

+
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)2m+1

(q; q)2m+1
b2m+1

∞∑
n=0

(a; q2)n

(q2; q2)n
(tq2m+1)n

=
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)2m

(q; q)2m
b2m (atq2m; q2)∞

(tq2m; q2)∞

+
(b; q)∞
(c; q)∞

∞∑
m=0

(c/b; q)2m+1

(q; q)2m+1
b2m+1 (atq2m+1; q2)∞

(tq2m+1; q2)∞

=
(b; q)∞(at; q2)∞
(c; q)∞(t; q2)∞

∞∑
m=0

(c/b; q)2m(t; q2)m

(q; q)2m(at; q2)m
b2m

+
(b; q)∞(atq; q2)∞
(c; q)∞(tq; q2)∞

∞∑
m=0

(c/b; q)2m+1(tq; q2)m

(q; q)2m+1(atq; q2)m
b2m+1.

��

In addition to Theorems 1.2.1 and 1.2.2, we require two corollaries of
Theorem 1.2.1. The first is also given in [7, equation (I5)].

Corollary 1.2.1. For |t| < 1,

∞∑
n=0

(b; q)2n

(q2; q2)n
t2n =

(−tb; q)∞
(−t; q)∞

∞∑
n=0

(b; q)n

(q; q)n(−tb; q)n
tn. (1.2.6)

Proof. By (1.2.1) with h = 2, a = c = 0, and t replaced by t2, we see that

∞∑
n=0

(b; q)2n

(q2; q2)n
t2n =

(b; q)∞
(t2; q2)∞

∞∑
n=0

(t2; q2)n

(q; q)n
bn

=
(b; q)∞

(t2; q2)∞

∞∑
n=0

(t; q)n(−t; q)n

(q; q)n
bn

=
(b; q)∞

(t2; q2)∞
(t; q)∞(−tb; q)∞

(b; q)∞

∞∑
n=0

(b; q)n

(q; q)n(−tb; q)n
tn,

by (1.2.1) with t = b and then h = 1, a = −t, b = t, and c = 0. Upon
simplification above, we deduce (1.2.6). ��

The next result can be found in [7, equation (I6)].

Corollary 1.2.2. For |b| < 1,

∞∑
n=0

(t; q2)n

(q; q)n
bn =

(btq; q2)∞
(bq; q2)∞

∞∑
n=0

(t; q2)n

(q2; q2)n(btq; q2)n
bn. (1.2.7)
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Proof. By (1.2.1) with h = 2 and a = c = 0, we see that

(b; q)∞
(t; q2)∞

∞∑
n=0

(t; q2)n

(q; q)n
bn =

∞∑
n=0

(b; q)2n

(q2; q2)n
tn

=
∞∑

n=0

(bq; q2)n(b; q2)n

(q2; q2)n
tn

=
(b; q2)∞(btq; q2)∞

(t; q2)∞

∞∑
n=0

(t; q2)n

(q2; q2)n(btq; q2)n
bn,

where we applied (1.2.1) with q replaced by q2, h = 1, a = bq, and c = 0.
Upon simplification, we complete the proof. ��

Our next result comes from [9, Theorem 7].

Corollary 1.2.3. For |t| < 1,

∞∑
n=0

(a; q)n(b; q2)n

(q; q)n(abt; q2)n
tn =

(at; q2)∞(bt; q2)∞
(t; q2)∞(abt; q2)∞

∞∑
n=0

(a; q2)n(b; q2)n

(q2; q2)n(bt; q2)n
(tq)n.

(1.2.8)

Proof. In (1.2.1), set h = 2, interchange t with b, replace a by at, and then
replace c by at. Upon simplification, we find that

∞∑
n=0

(a; q)n(b; q2)n

(q; q)n(abt; q2)n
tn =

(at; q)∞(b; q2)∞
(t; q)∞(abt; q2)∞

∞∑
n=0

(at; q2)n(t; q)2n

(q2; q2)n(at; q)2n
bn

=
(at; q)∞(b; q2)∞
(t; q)∞(abt; q2)∞

∞∑
n=0

(t; q2)n(tq; q2)n

(q2; q2)n(atq; q2)n
bn

=
(at; q)∞(b; q2)∞(tq; q2)∞(bt; q2)∞
(t; q)∞(abt; q2)∞(atq; q2)∞(b; q2)∞

∞∑
n=0

(a; q2)n(b; q2)n

(q2; q2)n(bt; q2)n
(tq)n,

where we invoked (1.2.1) with h = 1, q replaced by q2, and the variables a,
b, c, and t replaced by t, tq, atq, and b, respectively. Upon simplifying above,
we deduce (1.2.8) to complete the proof. ��

We also require the direct iteration of (1.2.1) with h = 1 [9, Theorem 8].
This is often called the second Heine transformation.

Corollary 1.2.4. For |t|, |c/b| < 1,

∞∑
n=0

(a)n(b)n

(q)n(c)n
tn =

(c/b)∞(bt)∞
(c)∞(t)∞

∞∑
n=0

(abt/c)n(b)n

(q)n(bt)n

(c

b

)n

. (1.2.9)
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Proof. By two applications of Theorem 1.2.1 with h = 1, the second with a,
b, c, and t replaced by t, c/b, at, and b, respectively, we find that

∞∑
n=0

(a)n(b)n

(q)n(c)n
tn =

(b)∞(at)∞
(c)∞(t)∞

∞∑
n=0

(c/b)n(t)n

(q)n(at)n
bn

=
(b)∞(at)∞
(c)∞(t)∞

(c/b)∞(bt)∞
(at)∞(b)∞

∞∑
n=0

(abt/c)n(b)n

(q)n(bt)n

(c

b

)n

,

which is the desired result. ��

Finally, we need one more iteration of (1.2.1) with h = 1 [18, p. 39, equa-
tion (3.3.13)]. This is often called the q-analogue of Euler’s transformation.

Corollary 1.2.5. For |t|, |abt/c| < 1,

∞∑
n=0

(a)n(b)n

(q)n(c)n
tn =

(abt/c)∞
(t)∞

∞∑
n=0

(c/a)n(c/b)n

(q)n(c)n

(
abt

c

)n

. (1.2.10)

Proof. Apply (1.2.1) with h = 1 and a, b, c, and t replaced by b, abt/c, bt,
and c/b, respectively. Consequently,

∞∑
n=0

(abt/c)n(b)n

(q)n(bt)n

(c

b

)n

=
(abt/c)∞(c)∞
(bt)∞(c/b)∞

∞∑
n=0

(c/a)n(c/b)n

(q)n(c)n

(
abt

c

)n

. (1.2.11)

Substituting the right-hand side of (1.2.11) for the sum on the right-hand side
of (1.2.9) and simplifying yields (1.2.10). ��

1.3 Ramanujan’s Proof of the q-Gauss Summation
Theorem

On pages 268–269 in his lost notebook, Ramanujan sketches his proof of the
q-Gauss summation theorem, normally given in the form

∞∑
n=0

(a)n(b)n

(c)n(q)n

( c

ab

)n

=
(c/a)∞(c/b)∞
(c)∞(c/(ab))∞

. (1.3.1)

This theorem was first discovered in 1847 by Heine [178], whose proof, which
is the most frequently encountered proof in the literature, is based on Heine’s
transformation, Theorem 1.2.1, with h = 1. This proof can be found in the
texts of Andrews [18, p. 20, Corollary 2.4], Andrews, R. Askey, and R. Roy
[30, p. 522], and G. Gasper and M. Rahman [151, p. 10]. A second proof
employs the q-analogue of Saalschütz’s theorem and can be read in the texts
of W.N. Bailey [44, p. 68] and L.J. Slater [263, p. 97]. Ramanujan’s proof
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is different from these two proofs and was first published in full in a paper
by Berndt and A.J. Yee [79]. Ramanujan’s proof encompasses Lemma 1.3.1,
Lemma 1.3.2, and Entry 1.3.1 below. After giving Ramanujan’s proof, we
prove a corollary of (1.3.1), which is found on page 370 in Ramanujan’s lost
notebook.

Before providing Ramanujan’s argument, we derive the q-analogue of the
Chu–Vandermonde theorem and record a special case that will be used in
Chapter 6. If we set b = q−N , where N is a nonnegative integer, in (1.3.1)
and simplify, we find that

2φ1(a, q−N ; c; q, cqN/a) =
(c/a)N

(c)N
, (1.3.2)

which is the q-analogue of the Chu–Vandermonde theorem. If we reverse the
order of summation on the left-hand side of (1.3.2), we deduce an alternative
form of the q-Chu–Vandermonde theorem, namely,

2φ1(a, q−N ; c; q, q) =
(c/a)N

(c)N
aN . (1.3.3)

Setting a = q−M and c = q−M−N , where M is a nonnegative integer, in
(1.3.3) yields

2φ1(q−M , q−N ; q−M−N ; q, q) =
(q−N )N

(q−M−N )N
q−MN =

(q−M )M (q−N )N

(q−M−N )M+N
q−MN

=
(q)M (q)Nq−M(M+1)/2−N(N+1)/2

(q)M+Nq−(M+N)(M+N+1)/2
q−MN

=
(q)M (q)N

(q)M+N
. (1.3.4)

In this chapter, we are providing analytic proofs of many of Ramanujan’s
theorems on basic hypergeometric series. Another approach uses combinato-
rial arguments. In [78], Berndt and Yee provided partition-theoretic proofs of
several identities in the lost notebook arising from the Rogers–Fine identity;
a few of these proofs were reproduced in [31, Chapter 12]. In [79], the same
authors gave a combinatorial proof of the q-Gauss summation theorem. Other
combinatorial proofs of this theorem based on overpartitions have been given
by S. Corteel and J. Lovejoy [144], Corteel [143], and Yee [285].

Lemma 1.3.1. If n is any nonnegative integer, then

(a)n =
n∑

k=0

(−1)k (qn+1−k)k

(q)k
qk(k−1)/2ak. (1.3.5)

Lemma 1.3.1 is a restatement of the q-binomial theorem (1.2.2) and can
be found in [54, p. 24, Lemma 12.1] or [18, p. 36, Theorem 3.3]. We now
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use Lemma 1.3.1 to establish Lemma 1.3.2 below along the lines indicated
by Ramanujan. Alternatively, Lemma 1.3.2 can be deduced from [151, p. 11,
equation (1.5.3)] by setting c = 0 and replacing q by 1/q there.

Lemma 1.3.2. If c �= 0 and n is any nonnegative integer, then

cn =
n∑

j=0

cj(1/c)j(qn+1−j)j

(q)j
. (1.3.6)

Proof. Denote the right side of (1.3.6) by g(c) and apply (1.3.5) with a = 1/c
and n = j in the definition of g(c) to find that

g(c) =
n∑

j=0

j∑
k=0

(−1)k (qj+1−k)k(qn+1−j)j

(q)j(q)k
qk(k−1)/2cj−k =:

n∑
r=0

arc
r.

The coefficient of cr, 0 ≤ r ≤ n, above is

ar =
n−r∑
k=0

(−1)k (qr+1)k(qn+1−r−k)r+k

(q)r+k(q)k
qk(k−1)/2. (1.3.7)

Now we can easily verify that

(qr+1)k

(q)r+k
=

1
(q)r

and
(qn+1−r−k)r+k = (qn+1−r−k)k(qn+1−r)r.

Using these last two equalities in (1.3.7), we find that

ar =
(qn+1−r)r

(q)r

n−r∑
k=0

(−1)k (qn−r+1−k)k

(q)k
qk(k−1)/2

=
(qn+1−r)r

(q)r
(1)n−r =

{
1, if r = n,

0, otherwise,

by (1.3.5). This therefore completes our proof of Lemma 1.3.2. ��

Entry 1.3.1 (pp. 268–269, q-Gauss Summation Theorem). If |abc| < 1
and bc �= 0, then

(ac)∞
(abc)∞

=
(a)∞
(ab)∞

∞∑
n=0

(1/b)n(1/c)n

(a)n(q)n
(abc)n. (1.3.8)

In Entry 4 of Chapter 16 in his second notebook [243], [54, p. 14], Ra-
manujan states the q-Gauss summation theorem in precisely the same form
as that given in (1.3.8).
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Proof. We rewrite the right side of (1.3.8) in the form
∞∑

j=0

(aqj)∞
(ab)∞

(1/b)j(1/c)j

(q)j
(abc)j (1.3.9)

and examine the coefficient of an, n ≥ 0, on each side of (1.3.8). From (1.2.2),
with b replaced by ab and a replaced by aqj , we find that

(aqj)∞
(ab)∞

=
∞∑

k=0

(qj/b)k

(q)k
(ab)k. (1.3.10)

The coefficient of an−j in (1.3.10) is

(qj/b)n−j

(q)n−j
bn−j ,

and so the coefficient of an in (1.3.9) equals

n∑
j=0

(1/b)j(1/c)j(qj/b)n−j

(q)j(q)n−j
bncj

=
(1/b)nbn

(q)n

n∑
j=0

cj(1/c)j(qn+1−j)j

(q)j
=

(1/b)nbn

(q)n
cn, (1.3.11)

by Lemma 1.3.2. But by (1.2.2), with b replaced by abc and a replaced by ac,

(ac)∞
(abc)∞

=
∞∑

n=0

(1/b)n

(q)n
(abc)n. (1.3.12)

So, the coefficient of an in (1.3.12) is precisely that on the right side of (1.3.11).
Hence, (1.3.8) immediately follows, since the coefficients of an, n ≥ 0, on both
sides of (1.3.8) are equal. The proof of Entry 1.3.1 is therefore complete. ��
Entry 1.3.2 (p. 370). For any complex numbers a and b,

(−aq)∞
(bq)∞

=
∞∑

n=0

(−b/a)nanqn(n+1)/2

(q)n(bq)n
. (1.3.13)

Proof. In (1.3.8), replace a by bq, c by −a/b, and b by t to find that

(bqt)∞(−aq)∞
(bq)∞(−aqt)∞

=
∞∑

n=0

(1/t)n(−b/a)n

(q)n(bq)n
(−aqt)n. (1.3.14)

If we let t → 0 in (1.3.14), we immediately arrive at (1.3.13) to complete the
proof. ��

A combinatorial proof of Entry 1.3.2 in the case b = 1 has been given by
S. Corteel and J. Lovejoy [145], but it can easily be extended to give a proof
of Entry 1.3.2 in full generality. Another combinatorial proof can be found in
a paper by Berndt, B. Kim, and A.J. Yee [73].
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1.4 Corollaries of (1.2.1) and (1.2.5)

Entry 1.4.1 (p. 3). For 0 < |aq|, |k| < 1,

(aq; q)∞(cq; q2)∞
(−bq; q)∞(kq2; q2)∞

∞∑
n=0

(kq2; q2)n(−bq/a; q)n

(cq; q2)n+1(q; q)n
anqn

=
∞∑

n=0

(cq/k; q2)n(aq; q)2n

(q2; q2)n(−bq; q)2n+1
knq2n. (1.4.1)

Proof. In (1.2.1), set h = 2 and t = kq2, and replace c by −bq2, a by cq/k,
and b by aq. The resulting identity is equivalent to (1.4.1). ��

We note that no generality has been lost by the substitutions above; so
Ramanujan had (1.2.1) in full generality for h = 2. Padmavathamma [225]
has also given a proof of (1.4.1).

Entry 1.4.2 (p. 3). For |bq| < 1,

(q; q2)∞(aq; q2)∞
∞∑

n=0

(−q; q)n(−bq; q)n

(aq; q2)n+1
qn

= (−bq; q)∞
∞∑

n=0

(q; q2)n(aq; q2)n

(−bq; q)2n+1
q2n.

Proof. In (1.2.1), set h = 2, b = q, and t = q2, and replace a by aq and c by
−bq2. The result then reduces to the identity above upon simplification. ��

Entry 1.4.3 (p. 12). For |aq|, |b| < 1,

∞∑
n=0

anqn

(q; q)n(bq; q2)n
=

1
(aq; q)∞(bq; q2)∞

∞∑
n=0

(−1)n(aq; q)2nbnqn2

(q2; q2)n
.

Proof. In (1.2.1), set h = 2, c = 0, and t = τ , and replace a by bq/τ and b
by aq. Then let τ → 0. The result easily simplifies to the identity above. ��

Entry 1.4.4 (p. 12). For |a|, |b| < 1,

∞∑
n=0

anq2n

(q2; q2)n(bq; q)2n
=

1
(aq2; q2)∞(bq; q)∞

∞∑
n=0

(−1)n(aq2; q2)nbnqn(n+1)/2

(q; q)n
.

Proof. In (1.2.1), set h = 2 and a = 0, let b → 0, and then replace t by aq2

and c by bq. ��

The previous two entries were also established by Padmavathamma [225].
The next result is a corrected version of Ramanujan’s claim.
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Entry 1.4.5 (p. 15, corrected). For any complex number a,

∞∑
n=0

(−aq; q)n(−q; q)nqn = (−q; q)∞(−aq; q)∞
∞∑

n=0

(q; q2)nq2n

(−aq; q)2n+1
.

Proof. In (1.2.1), set h = 2, a = 0, b = q, c = −aq2, and t = q2. Simplification
yields Ramanujan’s assertion. ��

The next two entries specialize to instances of identities for fifth-order
mock theta functions, as we shall see in our fourth volume on the lost notebook
[33]. The first is a corrected version of Ramanujan’s claim.

Entry 1.4.6 (p. 16, corrected). For any complex number a,

(−aq; q)∞
(−q; q)∞

∞∑
n=0

(aq; q)nqn2

(q2; q2)n

=
∞∑

n=0

(−1)n(a2q2; q2)2nq2n2

(q4; q4)n
− a

∞∑
n=1

(a2q2; q2)n−1(−q)n(n+1)/2

(−q;−q)n−1
.

Proof. The proof of this result is rather more intricate than the proofs of the
previous entries in this section. In (1.2.5), replace t by −q/a and let a → ∞
to deduce that

∞∑
n=0

(b; q)nqn2

(q2; q2)n(c; q)n
=

(b; q)∞(−q; q2)∞
(c; q)∞

∞∑
n=0

(c/b)2n

(q; q)2n(−q; q2)n
b2n

+
(b; q)∞(−q2; q2)∞

(c; q)∞

∞∑
n=0

(c/b)2n+1

(q; q)2n+1(−q2; q2)n
b2n+1.

Now set c = 0 and b = aq. If we multiply both sides of the resulting identity
by (−aq; q)∞/(−q; q)∞, we arrive at

(−aq; q)∞
(−q; q)∞

∞∑
n=0

(aq; q)nqn2

(q2; q2)n
=

(a2q2; q2)∞
(−q2; q2)∞

∞∑
n=0

a2nq2n

(q; q)2n(−q; q2)n

+
(a2q2; q2)∞
(−q; q2)∞

∞∑
n=0

a2n+1q2n+1

(q; q)2n+1(−q2; q2)n

=: T1 + T2. (1.4.2)

Next, in (1.2.1) with h = 2, replace q by q2, set a = q2/t, b = a2q2, and
c = 0, and let t → 0. Noting that (−q2; q2)∞ = 1/(q2; q4)∞, we deduce that

T1 =
∞∑

n=0

(−1)n(a2q2; q2)2nq2n2

(q4; q4)n
. (1.4.3)
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Finally, in (1.2.1), set h = 2, a = 0, and c = −q2, and let b → 0. Then set
t = a2q2 and multiply both sides of the resulting equality by 1/(1 + q). We
therefore find that

∞∑
n=0

a2nq2n

(q2; q2)n(−q; q)2n+1
=

1
(−q; q)∞(a2q2; q2)∞

∞∑
n=0

(a2q2; q2)nqn(n+3)/2

(q; q)n
.

Upon multiplying both sides of this last identity by aq(−q; q)∞(a2q2; q2)∞
and noting that (−q; q)∞ = 1/(q; q2)∞, we obtain, after replacing q by −q
and replacing n by n − 1 on the right-hand side,

T2 = −a

∞∑
n=1

(a2q2; q2)n−1(−q)n(n+1)/2

(−q;−q)n−1
. (1.4.4)

If we substitute (1.4.3) and (1.4.4) into (1.4.2), we obtain our desired
identity to complete the proof. ��

Entry 1.4.7 (p. 16). If a is any complex number, then

(−aq; q)∞
(−q; q)∞

∞∑
n=0

(aq; q)nqn(n+1)

(q2; q2)n
=

∞∑
n=0

(a2q2; q2)n(−q)n(n+1)/2

(−q;−q)n

+ a

∞∑
n=0

(−1)n(a2q2; q2)2nq2n2+4n+1

(q4; q4)n
.

Proof. In (1.2.5), let t = −q2/a and c = 0. After letting a → ∞, set b = aq.
Multiplying both sides of the resulting identity by (−aq; q)∞/(−q; q)∞, we
find that

(−aq; q)∞
(−q; q)∞

∞∑
n=0

(aq; q)nqn(n+1)

(q2; q2)n
=

(a2q2; q2)∞
(−q; q2)∞

∞∑
n=0

(aq)2n

(q; q)2n(−q2; q2)n

+
(a2q2; q2)∞
(−q2; q2)∞

∞∑
n=0

(aq)2n+1

(q; q)2n+1(−q; q2)n+1

=: S1 + S2. (1.4.5)

Now in (1.2.1) with h = 2, set a = 0 and c = −q, and let b tend to 0. Then
set t = a2q2. The result, after replacing q by −q and simplifying, is given by

∞∑
n=0

(a2q2; q2)n(−q)n(n+1)/2

(−q;−q)n
=

(a2q2; q2)∞
(−q; q2)∞

∞∑
n=0

(aq)2n

(q; q)2n(−q2; q2)n
= S1.

(1.4.6)
Next, in (1.2.1), set h = 2, replace q by q2, and then set b = a2q2, t = q6/a,

and c = 0. After letting a → ∞ and substantially simplifying, we find that
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a

∞∑
n=0

(−1)n(a2q2; q2)2nq2n2+4n+1

(q4; q4)n

=
(a2q2; q2)∞
(−q2; q2)∞

∞∑
n=0

(aq)2n+1

(q; q)2n+1(−q; q2)n+1
= S2. (1.4.7)

If we substitute (1.4.7) and (1.4.6) into (1.4.5), we obtain the desired
identity for this entry. ��

Entry 1.4.8 (p. 16). For arbitrary complex numbers a and b,

1
(aq; q)∞

∞∑
n=0

(aq; q)nbnqn2

(q2; q2)n
= (−bq; q2)∞

∞∑
n=0

(aq)2n

(q; q)2n(−bq; q2)n

+ (−bq2; q2)∞
∞∑

n=0

(aq)2n+1

(q; q)2n+1(−bq2; q2)n
.

Proof. This entry is a further special case of (1.2.5); replace a by −bq/t, set
c = 0 and b = aq, and let t → 0. ��

In her thesis [225], Padmavathamma also proved Entry 1.4.8. For a com-
binatorial proof of Entry 1.4.8, see the paper by Berndt, Kim, and Yee [73].

The next entry is the first of several identities in this chapter that provide
representations of theta functions or quotients of theta functions by basic
hypergeometric series. We therefore review here Ramanujan’s notations for
theta functions and some basic facts about theta functions.

Recall that the Jacobi triple product identity [18, p. 21, Theorem 2.8], [54,
p. 35, Entry 19] is given, for |ab| < 1, by

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.4.8)

Deducible from (1.4.8) are the product representations of the classical theta
functions [18, p. 23, Corollary 2.10], [54, pp. 36–37, Entry 22, equation (22.4)],

ϕ(−q) := f(−q,−q) =
∞∑

n=−∞
(−1)nqn2

=
(q)∞

(−q)∞
, (1.4.9)

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (1.4.10)

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞, (1.4.11)

where we have employed the notation used by Ramanujan throughout his
notebooks. The last equality in (1.4.11) is known as Euler’s pentagonal number
theorem. We also need the elementary result [54, p. 34, Entry 18(iii)]
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f(−1, a) = 0, (1.4.12)

for any complex number a with |a| < 1. Later, we need the fundamental
property [54, p. 34]: For |ab| < 1 and each integer n,

f(a, b) = an(n+1)/2bn(n−1)/2f
(
a(ab)n, b(ab)−n

)
. (1.4.13)

Entry 1.4.9 (p. 10). Let ϕ(−q) be defined by (1.4.9) above. Then

ϕ(−q)
∞∑

n=0

qn(n+1)/2

(q; q)2n
=

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n
. (1.4.14)

First Proof of Entry 1.4.9. In (1.2.1), we set h = 1, a = −q/τ , b = τ , c = q,
and t = τ . Letting τ tend to 0, we find that

∞∑
n=0

qn(n+1)/2

(q)2n
=

(−q)∞
(q)∞

∞∑
n=0

(−1)nqn(n+1)/2

(q)n(−q)n
. (1.4.15)

The desired result follows once we invoke the well-known product representa-
tion for ϕ(−q) in (1.4.9). ��

Second Proof of Entry 1.4.9. Our second proof is taken from the paper [73]
by Berndt, Kim, and Yee.

Multiplying both sides of (1.4.15) by (q)∞, we obtain the equivalent iden-
tity

∞∑
n=0

qn(n+1)/2

(q)n
(qn+1; q)∞ =

∞∑
n=0

(−1)nqn(n+1)/2

(q)n
(−qn+1; q)∞, (1.4.16)

since (q2; q2)∞ = (−q; q)∞(q; q)∞. The left side of (1.4.16) is a generating
function for the pair of partitions (π,ν), where π is a partition into n distinct
parts and ν is a partition into distinct parts that are strictly larger than n and
where the exponent of (−1) is the number of parts in ν. For a given partition
pair (π, ν) generated by the left side of (1.4.16), let k be the number of parts
in ν. Detach n from the each part of ν and attach k to each part of π. Then
we obtain partition pairs (σ, λ), such that σ is a partition into k distinct parts
and λ is a partition into distinct parts that are strictly larger than k, and the
exponent of (−1) is the number of parts in σ. These partitions are generated
by the right side of (1.4.16). Since this process is easily reversible, our proof
is complete. ��

The series on the left-hand sides of (1.4.14) and (1.4.18) below are the
generating functions for the enumeration of gradual stacks with summits and
stacks with summits, respectively [23]. Another generating function for grad-
ual stacks with summits was found by Watson [279, p. 59], [75, p. 328], who
showed that
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∞∑
n=0

qn(n+1)/2

(q; q)2n
=

1
(q; q)∞

∞∑
n=0

qn(2n+1)

(q2; q2)n
, (1.4.17)

which is implicit in the work of Ramanujan in his lost notebook [244]. An
elegant generalization of the concept of gradual stacks with summits has been
devised by Yee, with her generating function generalizing that on the right-
hand side of (1.4.17) [286, Theorem 5.2]. See Entry 6.3.1 for a significant
generalization of Entry 1.4.10 involving two additional parameters.

Entry 1.4.10 (p. 10).
∞∑

n=0

qn

(q)2n
=

1
(q)2∞

∞∑
n=0

(−1)nqn(n+1)/2. (1.4.18)

Proof. In (1.2.1), set h = 1, t = c = q, and a = 0, and then let b → 0. Entry
1.4.10 follows immediately. ��

Entry 1.4.11 (p. 10).

∞∑
n=0

q2n

(q)2n
=

1
(q)2∞

(
1 + 2

∞∑
n=1

(−1)nqn(n+1)/2

)
. (1.4.19)

Proof. In (1.2.1), set h = 1, a = 0, c = q, and t = q2. Now let b → 0 to
deduce that

∞∑
n=0

q2n

(q)2n
=

1
(q)2∞

(1 − q)
∞∑

n=0

(−1)n 1 − qn+1

1 − q
qn(n+1)/2

=
1

(q)2∞

( ∞∑
n=0

(−1)nqn(n+1)/2 +
∞∑

n=0

(−1)n+1q(n+1)(n+2)/2

)

=
1

(q)2∞

(
1 + 2

∞∑
n=1

(−1)nqn(n+1)/2

)
.

��

Observe that the sum on the right sides in Entries 1.4.10 and 1.4.11 is a
false theta function in the sense of L.J. Rogers. Several other entries in the
lost notebook involve this false theta function; see [31, pp. 227–232] for some
of these entries. In providing a combinatorial proof of Entry 1.4.11, Kim [189]
was led to a generalization for which he supplied a combinatorial proof.

The following entry has been combinatorially proved by Berndt, Kim, and
Yee [73].

Entry 1.4.12 (p. 10). For |a|, |b| < 1 and any positive integer n,

(−bqn; qn)∞
∞∑

m=0

amqm(m+1)/2

(q; q)m(−bqn; qn)m
= (−aq; q)∞

∞∑
m=0

bmqnm(m+1)/2

(qn; qn)m(−aq; q)nm
.

(1.4.20)
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Proof. In (1.2.1), set h = n and let b tend to 0. Then set t = −bqn/a and let
a tend to ∞. Finally, replace c by −aq. ��
Entry 1.4.13 (p. 11). For |a| < 1,

∞∑
n=0

(aq)n

(q2; q2)n(bq; q)n
=

1
(aq; q2)∞(bq; q)∞

∞∑
n=0

(aq; q2)nb2nq2n2+n

(q; q)2n

− 1
(aq2; q2)∞(bq; q)∞

∞∑
n=0

(aq2; q2)nb2n+1q2n2+3n+1

(q; q)2n+1
.

Proof. In (1.2.5), let a = 0 and let b → 0. Then replace t by aq and c by
bq. ��

In her doctoral dissertation [225], Padmavathamma gave another proof of
Entry 1.4.13, and gave proofs of the following two entries as well.

Entry 1.4.14 (p. 11). For any complex number a,

(q2; q4)∞
∞∑

n=0

(aq2; q2)nqn(n+1)/2

(q; q)n
= (aq4; q4)∞

∞∑
n=0

(aq2; q4)nq4n2

(q2; q2)2n

+ (aq2; q4)∞
∞∑

n=0

(aq4; q4)nq4n2+4n+1

(q2; q2)2n+1
.

Proof. In Entry 1.4.13, replace q by q2 and set b = −1/q. This yields
∞∑

n=0

anq2n

(q4; q4)n(−q; q2)n
=

1
(aq2; q4)∞(−q; q2)∞

∞∑
n=0

(aq2; q4)nq4n2

(q2; q2)2n

+
1

(aq4; q4)∞(−q; q2)∞

∞∑
n=0

(aq4; q4)nq4n2+4n+1

(q2; q2)2n+1
.

Consequently, in order to prove the desired result, we must show that

(aq2; q4)∞(−q; q2)∞(aq4; q4)∞
∞∑

n=0

anq2n

(q4; q4)n(−q; q2)n

= (q2; q4)∞
∞∑

n=0

(aq2; q2)nqn(n+1)/2

(q; q)n
, (1.4.21)

and this follows from (1.2.1). More precisely, let h = 2, c = −q, and a = 0,
and let b tend to 0. Then put t = aq2 and simplify. ��
Entry 1.4.15 (p. 11). If a is any complex number, then

(q2; q4)∞
∞∑

n=0

(aq2; q2)nq(n+1)(n+2)/2

(q; q)n
= (aq4; q4)∞

∞∑
n=0

(aq2; q4)nq4n2+4n+1

(q2; q2)2n

+ (aq2; q4)∞
∞∑

n=0

(aq4; q4)nq4n2+8n+4

(q2; q2)2n+1
.
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Proof. In Entry 1.4.13, replace q by q2 and set b = −q. Upon multiplication
of both sides by q/(1 + q), we find that

∞∑
n=0

anq2n+1

(q4; q4)n(−q; q2)n+1
=

1
(aq2; q4)∞(−q; q2)∞

∞∑
n=0

(aq2; q4)nq4n2+4n+1

(q2; q2)2n

+
1

(aq4; q4)∞(−q; q2)∞

∞∑
n=0

(aq4; q4)nq4n2+8n+4

(q2; q2)2n+1
.

Consequently, in order to prove Entry 1.4.15, we must show that

(−q; q2)∞(aq2; q4)∞(aq4; q4)∞
∞∑

n=0

anq2n+1

(q4; q4)n(−q; q2)n+1

= (q2; q4)∞
∞∑

n=0

(aq2; q2)nq(n+1)(n+2)/2

(q; q)n
. (1.4.22)

This last identity follows from (1.2.1). Set h = 2, c = −q2, and a = 0. Then
let b → 0. Setting t = aq2 and multiplying both sides of the resulting identity
by q/(1 + q), we complete the proof. ��

Entry 1.4.16 (p. 11). For any complex number a,

(q; q2)∞
∞∑

n=0

(−1)n(aq; q)2nqn(n+1)

(q2; q2)n
= (aq2; q2)∞

∞∑
n=0

(aq; q2)nq2n2+n

(q; q)2n

− (aq; q2)∞
∞∑

n=0

(aq2; q2)nq2n2+3n+1

(q; q)2n+1
.

Proof. Set b = 1 in Entry 1.4.13 to deduce that

∞∑
n=0

(aq)n

(q2; q2)n(q; q)n
=

1
(aq; q2)∞(q; q)∞

∞∑
n=0

(aq; q2)nq2n2+n

(q; q)2n

− 1
(aq2; q2)∞(q; q)∞

∞∑
n=0

(aq2; q2)nq2n2+3n+1

(q; q)2n+1
.

Therefore, in order to complete the proof of Entry 1.4.16, we must prove that

(q; q)∞(aq; q2)∞(aq2; q2)∞
∞∑

n=0

(aq)n

(q2; q2)n(q; q)n

= (q; q2)∞
∞∑

n=0

(−1)n(aq; q)2nqn(n+1)

(q2; q2)n
, (1.4.23)

and this follows from (1.2.1) with h = 2, first setting a = q2/t, then letting c
and t tend to 0, and finally replacing b by aq. ��
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Entry 1.4.17 (p. 30). For each positive integer n, the series

(−aq)∞
∞∑

m=0

bmqm(m+1)/2

(q)m(−aq)nm

is symmetric in a and b.

Proof. By an application of the q-binomial theorem (1.2.4),

(−aq)∞
∞∑

m=0

bmqm(m+1)/2

(q)m(−aq)nm
=

∞∑
m=0

bmqm(m+1)/2

(q)m
(−aqnm+1)∞

=
∞∑

m,j=0

bmajqm(m+1)/2+j(j+1)/2+nmj

(q)m(q)j
.

This last series is obviously symmetric in a and b, and so the proof is complete.
��

Berndt, Kim, and Yee [73] found a combinatorial proof of Entry 1.4.17.
The next result from the top of page 27 of Ramanujan’s lost notebook has

lines drawn through it. Furthermore, the right-hand side has ellipses after the
products forming the numerator and the denominator. If nothing is added, the
result is clearly false. However, the following identity has the same left-hand
side that Ramanujan gave, and the infinite products from the right-hand side
of his proposed identity are isolated in front of our right-hand side.

Entry 1.4.18 (p. 27, corrected). For any complex numbers a and b with
b �= 0,

∞∑
n=0

(−a/b; q2)nbnqn(n+1)/2

(q; q)n(aq2; q2)n

=
(−bq; q)∞
(aq; q)∞

{
(−a/b; q2)∞(aq; q)∞

(aq2; q2)∞

∞∑
n=0

(−bq2; q2)n

(q2; q2)n(−bq; q)2n

(
−a

b

)n
}

.

(1.4.24)

Proof. In (1.2.1), take h = 2, and then replace a, c, and t by −bq2, −bq,
and −a/b, respectively. Now let b → 0. Simplification then yields the desired
result. ��

1.5 Corollaries of (1.2.6) and (1.2.7)

The first two entries in this section were proved by G.N. Watson [278] and
Andrews [7], with Berndt, Kim, and Yee [73] also providing a combinatorial
proof of the former entry.
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Entry 1.5.1 (p. 42). If a is any complex number, then

∞∑
n=0

anqn2

(q; q)n
= (−aq2; q2)∞

∞∑
n=0

anqn2

(q2; q2)n(−aq2; q2)n

= (−aq; q2)∞
∞∑

n=0

anqn2+n

(q2; q2)n(−aq; q2)n
.

Proof. The first line follows by setting t = −aq/b in (1.2.7) and letting b → 0.
The second line follows from the fact that each of the right-hand entries is
equal to

∞∑
m,n=0

am+nqn2+m2+m+2mn

(q2; q2)m(q2; q2)n
.

To verify this last claim, first apply (1.2.4) to (−aq2n+2; q2)∞. Secondly, apply
(1.2.4) to (−aq2n+1; q2)∞ and then switch the roles of m and n. ��

M. Somos has observed that if we set

F (a, b; q) := (−bq; q2)∞
∞∑

n=0

anqn2

(q2; q2)n(−bq; q2)n
,

then
F (a, b; q) = F (b, a; q). (1.5.1)

Entry 1.5.1 then follows by taking b = aq in (1.5.1). To prove (1.5.1), return
to Entry 1.4.12, set n = 1, and replace q by q2, a by a/q, and b by b/q. Then
we easily see that (1.4.20) reduces to (1.5.1).

Entry 1.5.2 (p. 42). If a is any complex number, then

∞∑
n=0

a2nq4n2

(q4; q4)n
= (aq; q2)∞

∞∑
n=0

anqn2

(q2; q2)n(aq; q2)n
.

Proof. Replace q by q2 in (1.2.6). Then set b = −aq/t and let t → 0. ��

Entry 1.5.3 (p. 26).

(q; q2)∞
∞∑

n=0

q2n2+n

(q2; q2)n
=

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n
.

Proof. In Entry 1.5.2, replace q by
√

q, and then set a = −√
q. Using Euler’s

identity, we find that the result simplifies to the equality above. ��

Entry 1.5.4 (p. 26).

(q; q2)∞
∞∑

n=0

q2n2−n

(q2; q2)n
=

∞∑
n=0

(−1)nqn(n+3)/2

(q2; q2)n
.
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Proof. In (1.2.6), replace t by 1/b and let b → ∞. Hence,

∞∑
n=0

q2n2−n

(q2; q2)n
= (−q; q)∞

(
2 +

∞∑
n=1

(−1)nqn(n−1)/2

(q; q)n(−q; q)n−1

)

= (−q; q)∞

(
2 +

∞∑
n=1

(−1)nqn(n−1)/2(1 − qn + qn)
(q2; q2)n−1(1 − qn)

)

= (−q; q)∞

(
2 +

∞∑
n=1

(−1)nqn(n−1)/2

(q2; q2)n−1

+
∞∑

n=1

(−1)nqn(n+1)/2(1 + qn)
(q2; q2)n

)

= (−q; q)∞

(
2 −

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n

+
∞∑

n=1

(−1)nqn(n+1)/2

(q2; q2)n
+

∞∑
n=1

(−1)nqn(n+3)/2

(q2; q2)n

)

= (−q; q)∞
∞∑

n=0

(−1)nqn(n+3)/2

(q2; q2)n
.

By Euler’s identity, this last identity is equivalent to that of Entry 1.5.4. ��

1.6 Corollaries of (1.2.8), (1.2.9), and (1.2.10)

Entry 1.6.1 (p. 362). If a and b are any complex numbers, then

(aq)∞
∞∑

n=0

bnqn2

(q)n(aq)n
=

∞∑
n=0

(−1)n(b/a)nanqn(n+1)/2

(q)n
.

Proof. Replace t by t/(ab) in (1.2.9) and let a and b tend to ∞. This then
yields the identity

∞∑
n=0

tnqn2−n

(q)n(c)n
=

1
(c)∞

∞∑
n=0

(−1)n(t/c)ncnqn(n−1)/2

(q)n
. (1.6.1)

Replacing t by bq and c by aq in (1.6.1), we complete the proof. ��

Entry 1.6.1 is identical to Entry 9 in Chapter 16 of Ramanujan’s second
notebook [243], [54, p. 18]. Earlier proofs of Entry 1.6.1 were given by V. Ra-
mamani [234] and by Ramamani and K. Venkatachaliengar [235]. L. Carlitz
[99] posed the special case a = −1 of Entry 1.6.1 as a problem. S. Bhargava
and C. Adiga [81] proved a generalization of Entry 1.6.1, while H.M. Srivas-
tava [268] later established an equivalent formulation of their result. Lastly,
Berndt, Kim, and Yee [73] have devised a bijective proof of Entry 1.6.1.
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Entry 1.6.2 (p. 28). For any complex number a,

∞∑
n=0

anqn2
= 1 +

∞∑
n=1

(−q; q)n−1a
nqn(n+1)/2

(−aq2; q2)n
.

Proof. Subtracting 1 from both sides of this entry, shifting the summation
indices down by 1 on each side, and dividing both sides by aq, we see that the
identity above is equivalent to the identity

∞∑
n=0

anqn2+2n =
∞∑

n=0

(−q; q)nanqn(n+3)/2

(−aq2; q2)n+1
.

Now in (1.2.8), replace a by −aq2/t, set b = q2, and let t → 0. The resulting
identity then simplifies to that of Entry 1.6.2. ��

See the paper [73] by Berndt, Kim, and Yee for a combinatorial proof of
Entry 1.6.2.

The next result does not properly belong under the heading of this section,
but we have put it here because of its similarity to the previous entry. We note
that the case a = 1 is Entry 9.3.2 of Part I [31, p. 229].

Entry 1.6.3 (p. 28). For any complex number a,

∞∑
n=0

(−1)nanqn(n+1)/2 =
∞∑

n=0

(−1)n(q; q2)na2nqn(n+1)

(−aq; q)2n+1
.

Proof. In (1.2.1), let h = 2, replace a by a2q2/t, then set b = q and c = −aq2,
and let t → 0. After simplification, we find that

∞∑
n=0

(−1)n(q; q2)na2nqn(n+1)

(−aq; q)2n+1
= (q; q)∞(aq; q)∞

∞∑
n=0

qn

(q; q)n(aq; q)n

=
∞∑

n=0

(−1)nanqn(n+1)/2,

where we applied (1.2.1) with h = 1 and replaced a, b, c, and t, respectively,
by 0, 0, aq, and q. ��

Entry 1.6.4 (p. 38). For |aq| < 1,

∞∑
n=0

(−aq)n

(−aq2; q2)n
=

∞∑
n=0

(−1)nanqn(n+1)/2

(−aq; q)n
. (1.6.2)

Proof. In (1.2.8), set a = 0 and b = q2, and then replace t by −a. Simplifica-
tion yields
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∞∑
n=0

(−aq)n

(−aq2; q2)n
= (1 + a)

∞∑
n=0

(−q; q)n(−a)n

=
∞∑

n=0

(−1)nanqn(n+1)/2

(−aq; q)n
,

where the last line follows from (1.2.9), wherein we replaced a by −q and b
by q, then set t = −a, and let c → 0. ��

Entry 1.6.4 can also be derived from Entry 9.2.6 in our first book on the
lost notebook [31, p. 226]; this entry is on page 30 of [244]. In fact, when
Berndt and A.J. Yee gave a combinatorial proof of Entry 9.2.6 in [78], after
some elementary manipulation and the replacement of a by −aq in Entry 9.2.6,
they derived (1.6.2), for which they gave a bijective proof. Berndt, Kim, and
Yee [73] have recently found a simpler bijective proof of (1.6.2).

Entry 1.6.5 (p. 38). For any complex number a,

∞∑
m=0

amqm(m+1)

(q2; q2)m(1 + aq2m+1)
= (−aq2; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
. (1.6.3)

First Proof of Entry 1.6.5. Expanding 1/(1 + aq2n+1) in a geometric series,
inverting the order of summation, and using (1.2.4), we find that, for |aq| < 1,

∞∑
n=0

anqn(n+1)

(q2; q2)n(1 + aq2n+1)
=

∞∑
n=0

∞∑
m=0

(−1)man+mqn(n+1)+m(2n+1)

(q2; q2)n

=
∞∑

m=0

(−aq)m
∞∑

n=0

anqn(n+1+2m)

(q2; q2)n

=
∞∑

m=0

(−aq)m(−aq2+2m; q2)∞

= (−aq2; q2)∞
∞∑

m=0

(−aq)m

(−aq2; q2)m

= (−aq2; q2)∞
∞∑

n=0

(−a)nqn(n+1)/2

(−aq; q)n
,

where the last line follows from Entry 1.6.4. The desired result now follows
by analytic continuation in a. ��

Second Proof of Entry 1.6.5. Our second proof is taken from a paper by
Berndt, Kim, and Yee [73].

By Entry 1.6.4, the identity (1.6.3) can be written in the equivalent form

∞∑
m=0

amqm(m+1)

(q2; q2)m(1 + aq2m+1)
=

∞∑
n=0

(−aq)n(−aq2n+2; q2)∞.
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Note that (−aq2n+2; q2)∞ generates partitions into distinct even parts, each
greater than or equal to 2n + 2, with the exponent of a denoting the number
of parts. Let m be the number of parts generated by a partition arising from
(−aq2n+2; q2)∞. Detach 2n from each of the m parts. Combining this with
(−aq)n, we obtain (−aq2m+1)n. However, note that, for n ≥ 0, all of these
odd parts are generated by 1/(1 + aq2m+1), and each part is weighted by −a.
The remaining parts, which are even, are generated by

∞∑
m=0

amqm(m+1)

(q2; q2)m

.

For these partitions into m distinct even parts, the exponent of a again denotes
the number of parts. ��

Entry 1.6.6 (p. 35). Recall that ψ(q) is defined by (1.4.10). Then

∞∑
n=0

(−1)nqn2+n

(q2; q2)n(1 − q2n+1)
= ψ(q).

Proof. Set a = −1 in Entry 1.6.5. Using (1.2.4), we find that

∞∑
n=0

(−1)nqn2+n

(q2; q2)n(1 − q2n+1)
= (q2; q2)∞

∞∑
n=0

qn(n+1)/2

(q; q)n

= (q2; q2)∞(−q; q)∞ =
(q2; q2)∞
(q; q2)∞

= ψ(q),

by Euler’s identity and (1.4.10). ��

Entry 1.6.7 (p. 40). For |a| < 1,

(a)∞
∞∑

n=0

an

(q)n(bq)n
=

∞∑
n=0

anbnqn2

(q)n(bq)n
.

Proof. In (1.2.10), let both a and b tend to 0. Then replace t by a and c by
bq, and lastly multiply both sides by (a)∞. ��

1.7 Corollaries of Section 1.2 and Auxiliary Results

Up to now in this chapter, we have concentrated on results from the lost
notebook that can be traced to pairs of antecedent formulas proved in Section
1.2. In this section, we also often draw on several of the results from Section
1.2, but additionally we require other formulas that have appeared often in
Ramanujan’s work.

The Rogers–Fine identity [149, p. 15]
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∞∑
n=0

(α)n

(β)n
τn =

∞∑
n=0

(α)n(ατq/β)nβnτnqn2−n(1 − ατq2n)
(β)n(τ)n+1

(1.7.1)

is needed in this chapter. Ramanujan frequently used this identity in the lost
notebook; see Chapter 9 of [31], which is entirely devoted to formulas in the
lost notebook derived from (1.7.1).

The next two results are, in fact, special cases of the q-binomial theo-
rem, (1.2.2). However, it will be more convenient to invoke them using the
q-binomial coefficients, which are defined by

[
k
�

]
q

=
[
k
�

]
:=

⎧⎨
⎩

0, if � < 0 or � > k,
(q)k

(q)�(q)k−�
, otherwise.

(1.7.2)

For any complex numbers a, b, and any nonnegative integer n,

n∑
j=0

[
n
j

]
(−1)ja−jbjqj(j−1)/2 = (b/a)n. (1.7.3)

Also, for |z| < 1 and any nonnegative integer N ,

∞∑
n=0

[
n + N

n

]
zn =

1
(z)N+1

. (1.7.4)

Entry 1.7.1 (p. 5). For any complex number a,

∞∑
n=0

(−a; q)2n+1q
2n+1

(q; q2)n+1
+

∞∑
n=0

(−a)nqn(n+1)/2

=
(−aq; q)∞
(q; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
.

Proof. In (1.2.5), set t = q, b = −q, and a = 0; then replace c by aq. We
therefore deduce that

∞∑
n=0

qn

(q; q)n(aq; q)n
=

(−q; q)∞
(aq; q)∞(q; q2)∞

∞∑
n=0

(−a; q)2nq2n

(q2; q2)n

− (−q; q)∞
(aq; q)∞(q2; q2)∞

∞∑
n=0

(−a; q)2n+1q
2n+1

(q; q2)n+1
. (1.7.5)

In (1.2.1), set h = 1, a = 0, and t = q. Then, replacing c by aq and letting b
tend to 0, we find that

∞∑
n=0

qn

(q; q)n(aq; q)n
=

1
(q; q)∞(aq; q)∞

∞∑
n=0

(−a)nqn(n+1)/2. (1.7.6)
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Equating the right-hand sides of (1.7.6) and (1.7.5), and multiplying the result
by (q; q)∞(aq; q)∞, we deduce that

∞∑
n=0

(−a)nqn(n+1)/2 = −
∞∑

n=0

(−a; q)2n+1q
2n+1

(q; q2)n+1

+
(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−a; q)2nq2n

(q2; q2)n
.

We therefore will be finished with the proof if we can show that

∞∑
n=0

(−a; q)2nq2n

(q2; q2)n
=

(−aq; q)∞
(q2; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
. (1.7.7)

To that end, we apply (1.2.1) with h = 1, q replaced by q2, c = 0, t = q2,
a replaced by −a, and b replaced by −aq to find that

∞∑
n=0

(−a; q)2nq2n

(q2; q2)n
=

(−aq; q2)∞(−aq2; q2)∞
(q2; q2)∞

∞∑
n=0

(−aq)n

(−aq2; q2)n

=
(−aq; q)∞
(q2; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
,

by Entry 1.6.4. Thus, (1.7.7) has been proved, and so the proof of Entry 1.7.1
is complete. ��

Entry 1.7.2 (p. 5). If |b| < 1 and a is an arbitrary complex number, then

∞∑
n=0

(−1)n(−q; q)n(−aq/b; q)nbn

(aq; q2)n+1
=

∞∑
n=0

(−1)n(−aq/b; q)nbnqn(n+1)/2

(−b; q)n+1
.

Proof. In (1.2.1), set h = 2 and t = q2, and replace b, c, and a by −b, aq,
and aq, respectively. Consequently,

∞∑
n=0

(−1)n(−q; q)n(−aq/b; q)nbn

(aq; q2)n+1

=
(aq2; q2)∞(q2; q2)∞

(−b; q)∞

∞∑
n=0

(−b; q2)n(−bq; q2)n

(q2; q2)n(aq2; q2)n
q2n

=
∞∑

n=0

(−aq/b; q2)n

(−b; q2)n+1
(−bq)n,

where the last equality follows from (1.2.1) with h = 1, q replaced by q2,
t = q2, and a, b, and c replaced by −b, −bq, and aq2, respectively.
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To this last expression we apply the Rogers–Fine identity (1.7.1) with q
replaced by q2, α = −aq/b, β = −bq2, and τ = −bq to deduce that, after
multiplying both sides by 1/(1 + b),

∞∑
n=0

(−aq/b; q2)n

(−b; q2)n+1
(−bq)n

=
∞∑

n=0

(−aq/b; q2)n(−aq2/b; q2)n(−bq2)n(−bq)nq2n2−2n(1 − aq4n+2)
(−b; q2)n+1(−bq; q2)n+1

=
∞∑

n=0

(−aq/b; q2)n(−aq2/b; q2)nb2nq2n2+n(1 − aq4n+2)
(−b; q2)n+1(−bq; q2)n+1

=
∞∑

n=0

(−aq/b; q)2nb2nq2n2+n(1 − aq4n+2)
(−b; q)2n+2

=
∞∑

n=0

(−aq/b; q)2nb2nq2n2+n

(−b; q)2n+1

(
1 +

−bq2n+1 − aq4n+2

1 + bq2n+1

)

=
∞∑

n=0

(−aq/b; q)2nb2nq2n2+n

(−b; q)2n+1
−

∞∑
n=0

(−aq/b; q)2n+1b
2n+1q(n+1)(2n+1)

(−b; q)2n+2

=
∞∑

n=0

(−1)n(−aq/b; q)nbnqn(n+1)/2

(−b; q)n+1
,

which is the desired result. ��

Entry 1.7.3 (p. 30). For any complex numbers a and c,

∞∑
n=0

(c/a; q)nanqn(n+1)/2

(q; q)n(aq; q)n
=

(cq; q2)∞
(aq; q)∞

∞∑
n=0

(−1)n(a2q/c; q2)ncnqn2+n

(q2; q2)n(cq; q2)n
.

Proof. First, applying (1.2.9) with a, b, c, and t replaced by −q/τ , c/a, aq,
and aτ , respectively, and letting τ tend to 0, we find that

∞∑
n=0

(c/a; q)nanqn(n+1)/2

(q; q)n(aq; q)n
=

(a2q/c; q)∞
(aq; q)∞

∞∑
n=0

(c2/a2; q2)n

(q; q)n

(
a2q

c

)n

. (1.7.8)

Second, we invoke (1.2.8) with a, b, and t replaced by 0, c2/a2, and a2q/c,
respectively, to deduce that

∞∑
n=0

(c2/a2; q2)n

(q; q)n

(
a2q

c

)n

=
(cq; q2)∞

(a2q/c; q2)∞

∞∑
n=0

(c2/a2; q2)n

(q2; q2)n(cq; q2)n

(
a2q2

c

)n

.

(1.7.9)
Combining (1.7.8) and (1.7.9), we see that
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∞∑
n=0

(c/a; q)nanqn(n+1)/2

(q; q)n(aq; q)n

=
(a2q2/c; q2)∞(cq; q2)∞

(aq; q)∞

∞∑
n=0

(c2/a2; q2)n

(q2; q2)n(cq; q2)n

(
a2q2

c

)n

=
(a2q2/c; q2)∞(cq; q2)∞

(aq; q)∞
(a2q/c; q2)∞(cq2; q2)∞
(a2q2/c; q2)∞(cq; q2)∞

×
∞∑

n=0

(c2/a2; q2)n

(q2; q2)n(cq2; q2)n

(
a2q

c

)n

, (1.7.10)

where in the last line we applied (1.2.9) with q replaced by q2 and with a, b,
c, and t replaced respectively by 0, c2/a2, cq, and a2q2/c.

On the other hand, by (1.2.1) with q replaced by q2, h = 1, and a, b, c,
and t replaced by q2/τ , a2q/c, cq, and cτ , we find that, upon letting τ → 0,

∞∑
n=0

(−1)n(a2q/c; q2)ncnqn2+n

(q2; q2)n(cq; q2)n

=
(a2q/c; q2)∞(cq2; q2)∞

(cq; q2)∞

∞∑
n=0

(c2/a2; q2)n

(q2; q2)n(cq2; q2)n

(
a2q

c

)n

. (1.7.11)

Equating the left-hand side of (1.7.11) multiplied by (cq; q2)∞/(aq; q)∞ with
the left-hand side of (1.7.10), we arrive at

(cq; q2)∞
(aq; q)∞

∞∑
n=0

(−1)n(a2q/c; q2)ncnqn2+n

(q2; q2)n(cq; q2)n

=
(a2q/c; q2)∞(cq2; q2)∞

(aq; q)∞

∞∑
n=0

(c2/a2; q2)n

(q2; q2)n(cq2; q2)n

(
a2q

c

)n

=
∞∑

n=0

(c/a; q)nanqn(n+1)/2

(q; q)n(aq; q)n
,

which is what we wanted to prove. ��

The next two entries are, respectively, the cases a = i, b = −i and a = iq,
b = −iq in Andrews’s paper on the q-analogue of Kummer’s theorem [15,
p. 526, equation (1.8)].

Entry 1.7.4 (p. 34). Recalling that ϕ(−q) is defined in (1.4.9), we have

∞∑
n=0

(−1; q2)nqn(n+1)/2

(q; q)n(q; q2)n
=

ϕ(−q4)
ϕ(−q)

.
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Proof. In (1.2.1), set h = 2 and c = a = −q, and let b → 0 to deduce that
∞∑

n=0

(t; q2)nqn(n+1)/2

(q; q)n(−tq; q2)n
=

(−q; q)∞(t; q2)∞
(−tq; q2)∞

∞∑
n=0

tn

(q4; q4)n

=
(−q; q)∞(tq2; q2)∞

(−tq; q2)∞(tq4; q4)∞
, (1.7.12)

by (1.2.3) with b = t and q replaced by q4. If we now set t = −1 above, the
left-hand side of (1.7.12) reduces to the left-hand side in Entry 1.7.4, while
the right-hand side reduces to

(−q; q)∞(−q2; q2)∞
(q; q2)∞(−q4; q4)∞

=
(−q; q)∞(−q2; q2)∞(q2; q2)∞

(q; q)∞(−q4; q4)∞

=
(−q; q)∞(q4; q4)∞
(q; q)∞(−q4; q4)∞

=
ϕ(−q4)
ϕ(−q)

,

by (1.4.9), as desired. ��

Entry 1.7.5 (p. 35). If ϕ(−q) and ψ(q) are defined by (1.4.9) and (1.4.10),
respectively, then

∞∑
n=0

(−q2; q2)nqn(n+1)/2

(q; q)n(q; q2)n+1
=

ψ(−q2)
ϕ(−q)

.

Proof. In (1.2.1), take h = 2, a = c = −q, b = 0, and t = −q2, and multiply
both the numerator and the denominator of the resulting identity by 1 − q.
Then use (1.2.3) with b = −q2 and q replaced by q4. Accordingly, after using
Euler’s identity, we find that

∞∑
n=0

(−q2; q2)nqn(n+1)/2

(q; q)n(q; q2)n+1
= (−q; q)2∞(−q2; q2)∞

∞∑
n=0

(−q2)n

(q4; q4)n

=
(−q; q)2∞(−q2; q2)∞

(−q2; q4)∞

=
(−q; q)∞(−q2; q2)∞(q2; q2)∞
(q; q2)∞(q2; q2)∞(−q2; q4)∞

=
(−q; q)∞(q4; q4)∞
(q; q)∞(−q2; q4)∞

=
ψ(−q2)
ϕ(−q)

,

by (1.4.9) and (1.4.10). This completes the proof. ��

The next entry can be found in Slater’s compendium [262, equation (35)].

Entry 1.7.6 (p. 35). Recall that f(a, b) is defined in (1.4.8). Then
∞∑

n=0

(−q; q2)nq(n+1)(n+2)/2

(q; q)n(q; q2)n+1
=

qf(−q,−q7)
ϕ(−q)

.



1.7 Corollaries of Section 1.2 and Auxiliary Results 33

Proof. In (1.2.1), set h = 2, a = c = −q2, t = −q, and b = 0. Multiplying
both sides of the resulting identity by q/(1 + q), we find that

∞∑
n=0

(−q; q2)nq(n+1)(n+2)/2

(q; q)n(q; q2)n+1
=

q(−q; q2)∞
(q; q2)2∞

∞∑
n=0

(−q)n

(−q;−q)2n+1
. (1.7.13)

Using (1.2.3) twice, with b =
√

q and b = −√
q, respectively, using Euler’s

identity, and employing the Jacobi triple product identity (1.4.8) three times
altogether, we find that

∞∑
n=0

qn

(q; q)2n+1
=

1
2

∞∑
n=0

(1 − (−1)n)
q(n−1)/2

(q; q)n

=
1

2
√

q

(
1

(
√

q; q)∞
− 1

(−√
q; q)∞

)

=
1

2
√

q(q; q)∞

(
(−q1/2; q2)∞(−q3/2; q2)∞(q2; q2)∞

−(q1/2; q2)∞(q3/2; q2)∞(q2; q2)∞
)

=
1

2
√

q(q; q)∞

( ∞∑
n=−∞

qn2−n/2 −
∞∑

n=−∞
(−1)nqn2−n/2

)

=
1

√
q(q; q)∞

∞∑
n=−∞

q(2n+1)2−(2n+1)/2

=
1

(q; q)∞

∞∑
n=−∞

q4n2+3n

=
f(q, q7)
(q; q)∞

. (1.7.14)

Replacing q by −q in (1.7.14), substituting the result in (1.7.13), and using
Euler’s identity, we deduce that

∞∑
n=0

(−q; q2)nq(n+1)(n+2)/2

(q; q)n(q; q2)n+1
=

q(−q; q2)∞f(−q,−q7)
(q; q2)2∞(q2; q2)∞(−q; q2)∞

=
q(−q; q)∞f(−q,−q7)

(q; q)∞

=
qf(−q,−q7)

ϕ(−q)
,

which is the desired result. ��
Entry 1.7.7 (p. 35). If f(a, b) is defined by (1.4.8), then

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1 − q2n+1)
= qf(q, q7).
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Proof. Expanding 1/(1 − q2n+1) in a geometric series, inverting the order of
summation, appealing to (1.2.4), and using (1.7.14), we find that

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1 − q2n+1)
=

∞∑
n=0

∞∑
m=0

(−1)nq(n+1)(n+2)/2+m(2n+1)

(q)n

=
∞∑

m=0

qm+1
∞∑

n=0

(−1)nqn(n−1)/2+n(2m+2)

(q)n

=
∞∑

m=0

qm+1(q2m+2)∞

= q(q)∞
∞∑

m=0

qm

(q)2m+1

= qf(q, q7),

which completes the proof. ��

Entry 1.7.8 can be found in Slater’s paper [262, equation (37)].

Entry 1.7.8 (p. 35). If f(a, b) is defined by (1.4.8), then

∞∑
n=0

(−q; q2)nqn(n+1)/2

(q; q)n(q; q2)n+1
=

f(−q3,−q5)
ϕ(−q)

. (1.7.15)

Proof. In (1.2.1), we set h = 2, a = −q2, b = 0, and c = t = −q. Upon using
Euler’s identity, we find that

∞∑
n=0

(−q; q2)nqn(n+1)/2

(q; q)n(q; q2)n+1
= (−q; q)2∞(−q; q2)∞

∞∑
n=0

(−q)n

(−q;−q)2n
. (1.7.16)

We now proceed as we did in the proof of Entry 1.7.6. We apply (1.2.3)
twice, with b =

√
q,−√

q, and use the Jacobi triple product identity (1.4.8).
Accordingly,

∞∑
n=0

qn

(q; q)2n
=

1
2

∞∑
n=0

(1 + (−1)n)
qn/2

(q; q)n

=
1
2

(
1

(
√

q; q)∞
+

1
(−√

q; q)∞

)

=
1

2(q; q)∞

(
(−q1/2; q2)∞(−q3/2; q2)∞(q2; q2)∞

+(q1/2; q2)∞(q3/2; q2)∞(q2; q2)∞
)

=
1

2(q; q)∞

( ∞∑
n=−∞

qn2+n/2 +
∞∑

n=−∞
(−1)nqn2+n/2

)
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=
1

(q; q)∞

∞∑
n=−∞

q4n2+n

=
f(q3, q5)
(q; q)∞

. (1.7.17)

Replacing q by −q in (1.7.17), combining the result with (1.7.16), and
using Euler’s identity, we deduce that

∞∑
n=0

(−q; q2)nqn(n+1)/2

(q; q)n(q; q2)n+1
=

(−q; q)2∞(−q; q2)∞f(−q3,−q5)
(q2; q2)∞(−q; q2)∞

=
(−q; q)∞f(−q3,−q5)

(q; q)∞

=
f(−q3,−q5)

ϕ(−q)
,

by (1.4.9). This therefore completes the proof. ��
Entry 1.7.9 (p. 35). With f(a, b) defined by (1.4.8), we have

∞∑
n=0

(−1)nqn(n+1)/2

(q)n(1 − q2n+1)
= f(q3, q5).

Proof. Employing the q-binomial theorem (1.2.4) and proceeding as we did
in (1.7.17), we find that

∞∑
n=0

(−1)nqn(n+1)/2

(q)n(1 − q2n+1)
=

∞∑
n=0

∞∑
m=0

(−1)nqn(n+1)/2+m(2n+1)

(q)n

=
∞∑

m=0

qm(q2m+1)∞

= (q)∞
∞∑

m=0

qm

(q)2m

=
1
2
(q)∞

∞∑
m=0

(1 + (−1)m)
qm/2

(q)m

=
1
2
(q)∞

(
1

(q1/2)∞
+

1
(−q1/2)∞

)

=
1
2

( ∞∑
n=−∞

qn2+n/2 +
∞∑

n=−∞
(−1)nqn2+n/2

)

=
∞∑

n=−∞
q4n2+n = f(q3, q5),

by (1.4.8). ��
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Entry 1.7.10 (p. 3). Recall that ψ(q) is defined in (1.4.10). Then

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)2n
=

1
ψ(q)

. (1.7.18)

Proof. We utilize the q-Gauss summation theorem (1.3.1). Replace q by q2.
Then set b = q and c = q2. Letting a → ∞, we find that

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)2n
=

(q; q2)∞
(q2; q2)∞

=
1

ψ(q)
,

by (1.4.10). ��

Entry 1.7.10 is identical to Entry 4.2.6. I. Pak [226] asked for a combinato-
rial proof of (1.7.18), but there is a misprint in his formulation. Berndt, Kim,
and Yee [73] observed that if in Entry 1.3.2 we replace q by q2 and then set
b = 1 and a = 1/q, we obtain Entry 1.7.10 with q replaced by −q. Since these
authors also gave a combinatorial proof of Entry 1.3.2, this gives the desired
combinatorial proof sought by Pak.

Entry 1.7.11 (p. 41). With f(a, b) defined by (1.4.8) and ψ(q) defined by
(1.4.10),

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)n
=

ψ(q4)
f(q, q7)

.

Proof. In (1.2.1), let h = 1, replace q by q2, then set a = q/t, b = q, and
c = 0, and lastly let t → 0 and simplify. Using (1.7.17), (1.4.8) twice, and
(1.4.10), we find that

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)n
= (q; q2)2∞

∞∑
n=0

qn

(q; q)2n

=
(q; q2)2∞
(q; q)∞

f(q3, q5)

=
(q; q2)∞(−q3; q8)∞(−q5; q8)∞(q8; q8)∞

(q2; q2)∞

=
(q; q2)∞(q8; q8)∞(−q; q2)∞

(q2; q2)∞(−q; q8)∞(−q7; q8)∞

=
(q8; q8)∞

(q4; q8)∞(q8; q8)∞(−q; q8)∞(−q7; q8)∞

=
ψ(q4)

f(q, q7)
,

as desired. ��
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The latter entry and the next entry are the analytic versions of the two
famous Göllnitz–Gordon identities [157]. They can also be found in Slater’s
list [262, equations (36), (34)], but with q replaced by −q. The Göllnitz–
Gordon identities have played a seminal role in the subsequent development
of the theory of partition identities. They were first studied in this regard by
H. Göllnitz [156] and by B. Gordon [158], [159]. A generalization by Andrews
[10] led to a number of further discoveries culminating in [16].

Entry 1.7.12 (p. 41). If ψ(q) and f(a, b) are defined by (1.4.10) and (1.4.8),
respectively, then

∞∑
n=0

(−1)n(q; q2)nqn2+2n

(q2; q2)n
=

ψ(q4)
f(q3, q5)

.

Proof. In (1.2.1), set h = 1, replace q by q2, then set a = q3/t, b = q, and
c = 0, and lastly let t → 0. Simplifying, using (1.7.14), and invoking the triple
product identity (1.4.8), we find that

∞∑
n=0

(−1)n(q; q2)nqn2+2n

(q2; q2)n
= (q; q2)2∞

∞∑
n=0

qn

(q; q)2n+1

=
(q; q2)2∞
(q; q)∞

f(q, q7)

=
(q; q2)∞(−q; q8)∞(−q7; q8)∞(q8; q8)∞

(q2; q2)∞

=
(q; q2)∞(−q; q2)∞(q8; q8)∞

(q2; q2)∞(−q3; q8)∞(−q5; q8)∞

=
(q8; q8)∞

(q4; q8)∞(q8; q8)∞(−q3; q8)∞(−q5; q8)∞

=
ψ(q4)

f(q3, q5)
,

by (1.4.10) and (1.4.8). ��

Entry 1.7.13 (p. 35). Recall that ϕ(−q) is defined in (1.4.9). Then

∞∑
n=0

(−q2; q2)nqn2

(q; q)2n+1
=

ϕ(−q2)
ϕ(−q)

.

Proof. We apply (1.2.9) with q replaced by q2 and with a, b, and c replaced
by −q/t, −q2, and q3, respectively. We then let t tend to 0. Thus,

∞∑
n=0

(−q2; q2)nqn2

(q; q)2n+1
=

1
1 − q

∞∑
n=0

(−q2; q2)nqn2

(q2; q2)n(q3; q2)n
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=
(−q; q2)∞
(q; q2)∞

=
(q2; q2)∞

(−q2; q2)∞
(−q; q)∞
(q; q)∞

=
ϕ(−q2)
ϕ(−q)

,

by (1.4.9). ��

The next entry is also a special case of Lebesgue’s identity [200], [18, p. 21,
Corollary 2.7]. One can also find it in Slater’s paper [262, equation (12)].

Entry 1.7.14 (p. 34). With ϕ(q) as in the previous entry,

∞∑
n=0

(−1)nqn(n+1)/2

(q)n
=

ϕ(−q2)
ϕ(−q)

.

Proof. In (1.2.1), set h = 1, a = −q/t, and c = −bt, and then let t → 0. After
simplification and the use of (1.2.3), we find that [18, p. 21]

∞∑
n=0

(b; q)nqn(n+1)/2

(q; q)n
= (b; q)∞(−q; q)∞

∞∑
n=0

bn

(q2; q2)n

=
(b; q)∞(−q; q)∞

(b; q2)∞
= (bq; q2)∞(−q; q)∞.

Setting b = −1 above, we find that

∞∑
n=0

(−1; q)nqn(n+1)/2

(q; q)n
= (−q; q2)∞(−q; q)∞. (1.7.19)

Now, by Euler’s identity,

(−q; q2)∞ =
(−q; q)∞

(−q2; q2)∞
=

(q2; q2)∞
(q; q2)∞(q2; q2)∞(−q2; q2)∞

=
(q2; q2)∞

(q; q)∞(−q2; q2)∞
.

(1.7.20)
Thus, using (1.7.20) in (1.7.19), we find that

∞∑
n=0

(−1; q)nqn(n+1)/2

(q; q)n
=

(q2; q2)∞
(−q2; q2)∞

(−q; q)∞
(q; q)∞

=
ϕ(−q2)
ϕ(−q)

,

by (1.4.9). ��
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Entry 1.7.15 (p. 28). If

φ(a, q) :=
∞∑

n=0

anqn2

(q; q)n
,

then

φ(a, q)φ(b, 1/q) =
∞∑

n=0

(b/(aqn); 1/q)nanqn2

(q; q)n
.

This is a purely formal power series identity in the variables a and b. There
are no values of q for which all the series in the identity converge.

Proof. Formally, after algebraic simplification,

φ(a, q)φ(b, 1/q) =
∞∑

j,n=0

(−1)najbnqj2−n(n−1)/2

(q; q)j(q; q)n
. (1.7.21)

On the other hand, by (1.7.3),

∞∑
n=0

(b/(aqn); 1/q)nanqn2

(q; q)n
=

∞∑
n=0

(−1)nbnq−n(n−1)/2(aqn/b; q)n

(q; q)n

=
∞∑

n=0

(−1)nbnq−n(n−1)/2

(q; q)n

n∑
j=0

[
n
j

]
(−1)j(aqn/b)jqj(j−1)/2

=
∞∑

j,n=0

(−1)najbnqj2−n(n−1)/2

(q; q)j(q; q)n
, (1.7.22)

where in the last step we replaced n by n + j after inverting the order of
summation. Comparing (1.7.21) and (1.7.22), we see that we have completed
the proof. ��

Entry 1.7.16 (p. 28). Let a and b be any complex numbers, and suppose that
|xy| < 1. If

φ(a, x, y) :=
∞∑

n=0

anxn(n+1)/2

(xy;xy)n
,

then

φ(a, x, y)φ(b, y, x) =
∞∑

n=0

(ax + byn)(ax2 + byn−1) · · · (axn + by)
(xy;xy)n

.

Proof. Applying the q-binomial theorem (1.7.3), we find that

∞∑
n=0

(ax + byn)(ax2 + byn−1) · · · (axn + by)
(xy;xy)n
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=
∞∑

n=0

y−n(n+1)/2(axy + byn+1)(ax2y2 + byn+1) · · · (axnyn + byn+1)
(xy;xy)n

=
∞∑

n=0

y−n(n+1)/2

(xy;xy)n

n∑
j=0

[
n
j

]
xy

(byn+1)n−j(axy)j(xy)j(j−1)/2

=
∞∑

n,j=0

ajbnxj(j+1)/2yn(n+1)/2

(xy;xy)j(xy;xy)n

= φ(a, x, y)φ(b, y, x),

where in the penultimate line we inverted the order of summation and then
replaced n by n + j. ��

Entry 1.7.17 (p. 57). If

φ(a) :=
∞∑

n=0

anqn(n+1)/2

(q2; q2)n
,

then

φ(a)φ(b) =
∞∑

n=0

(a + bqn−1)(a + bqn−3) · · · (a + bq1−n)qn(n+1)/2

(q2; q2)n
.

Proof. Set x = y = q in Entry 1.7.16. ��

Entry 1.7.18 (p. 31). The expression

1
1 − α

+
∞∑

n=1

βn

(1 − αxn)(1 − αxn−1y) · · · (1 − αyn)

is symmetric in α and β.

Proof. Set q = y/x. Then, by (1.7.4),

1
1 − α

+
∞∑

n=1

βn

(1 − αxn)(1 − αxn−1y) · · · (1 − αyn)

=
1

1 − α
+

∞∑
n=1

βn

(1 − αxn)(1 − αxnq) · · · (1 − αxnqn)

=
∞∑

n=0

βn

(αxn; q)n+1

=
∞∑

n,m=0

βnαm

[
n + m

m

]
xnm,

which is easily seen to be symmetric in α and β. ��
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For a combinatorial proof of Entry 1.7.18, see [19, pp. 106–107], [75, p. 182].

Entry 1.7.19 (p. 26). Define the coefficients cn, n ≥ 0, by

∞∑
n=0

cnλn :=
(−aλ)∞

(bλ)∞(cλ)∞
.

Then
∞∑

n=0

cnqn(n+1)/2 = (−cq)∞
∞∑

n=0

(−a/b)nbnqn(n+1)/2

(q)n(−cq)n
. (1.7.23)

Proof. By (1.2.2) and (1.2.3),

∞∑
n=0

cnλn =
(−aλ)∞
(bλ)∞

1
(cλ)∞

=
∞∑

m=0

(−a/b)m(bλ)m

(q)m

∞∑
k=0

(cλ)k

(q)k

=
∞∑

n=0

λn
∑

m+k=n

(−a/b)mbmck

(q)m(q)k
.

Hence, for n ≥ 0,

cn =
∑

m+k=n

(−a/b)mbmck

(q)m(q)k
.

Therefore, by (1.2.4),

∞∑
n=0

cnqn(n+1)/2 =
∞∑

n=0

∑
m+k=n

(−a/b)mbmckq(m+k)(m+k+1)/2

(q)m(q)k

=
∞∑

m=0

(−a/b)mbmqm(m+1)/2

(q)m

∞∑
k=0

(cqm+1)kqk(k−1)/2

(q)k

=
∞∑

m=0

(−a/b)mbmqm(m+1)/2

(q)m
(−cqm+1)∞

= (−cq)∞
∞∑

m=0

(−a/b)mbmqm(m+1)/2

(q)m(−cq)m
,

which is what we wanted to prove. ��

If we set a = 0 in (1.7.23), we see that Entry 6.2.4 in our first volume on
the lost notebook [31, p. 148] is an immediate corollary of Entry 1.7.19. Fur-
thermore, in the notation of Entry 6.2.4 of [31], the claim that (−bq)∞G(a, b)
is symmetric in a and b, as asserted in [244, p. 42], is also immediate from
Entry 1.7.19.
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Entry 1.7.20 (p. 57). Let m and n be nonnegative integers. Let

φ(a) :=
∞∑

j=0

ajqmj2+nj

(q)j
and ψ(a) :=

φ(aq)
φ(a)

.

Then
φ(a) = φ(aq) + aqm+nφ(aq2m) (1.7.24)

and
1 = ψ(a) + aqm+nψ(a)ψ(aq)ψ(aq2) · · ·ψ(aq2m−1).

Proof. We have

φ(a) − φ(aq) =
∞∑

j=0

ajqmj2+nj(1 − qj)
(q)j

=
∞∑

j=1

ajqmj2+nj

(q)j−1

= aqm+n
∞∑

j=0

ajqmj2+2mj+nj

(q)j

= aqm+nφ(aq2m),

which is the first assertion.
Upon dividing both sides of (1.7.24) by φ(a) and noting that

φ(aq2m)
φ(a)

= ψ(a)ψ(aq)ψ(aq2) · · ·ψ(a2m−1),

we obtain the second assertion. ��

Entry 1.7.21 (p. 10). For |xy| < 1 and a and b arbitrary,

∞∑
n=0

(ab)n(xy)n(n+1)/2y−n

(ax;x)n(by; y)n
= 1 − b + b

∞∑
n=0

(ab)n(xy)n(n+1)/2

(ax;x)n+1(by; y)n
.

Proof. We have

1 − b + b
∞∑

n=0

(ab)n(xy)n(n+1)/2

(ax;x)n+1(by; y)n

= 1 − b + b
∞∑

n=0

(ab)n(xy)n(n+1)/2

(ax;x)n(by; y)n

(
1 +

axn+1

1 − axn+1

)

= 1 − b + b

∞∑
n=0

(ab)n(xy)n(n+1)/2

(ax;x)n(by; y)n
+

∞∑
n=0

(ab)n+1(xy)(n+1)(n+2)/2y−n−1

(ax;x)n+1(by; y)n
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= 1 +
∞∑

n=1

(ab)nb(xy)n(n+1)/2

(ax;x)n(by; y)n
+

∞∑
n=1

(ab)n(xy)n(n+1)/2y−n

(ax;x)n(by; y)n−1

= 1 +
∞∑

n=1

(ab)n(xy)n(n+1)/2y−n

(ax;x)n(by; y)n
(byn + (1 − byn))

=
∞∑

n=0

(ab)n(xy)n(n+1)/2y−n

(ax;x)n(by; y)n
.

Thus, the proof is complete. ��
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The Sears–Thomae Transformation

2.1 Introduction

In this chapter, we consider those identities in the lost notebook most closely
tied to the transformation

3φ2

(
a, b, c
d, e

; q,
de

abc

)
=

(e/a)∞(de/(bc))∞
(e)∞(de/(abc))∞

3φ2

(
a, d/b, d/c
d, de/(bc) ; q,

e

a

)
, (2.1.1)

where

r+1φr

(
a0, a1, . . . , ar

b1, . . . , br
; q, t
)

=
∞∑

n=0

(a0)n(a1)n · · · (ar)n

(q)n(b1)n · · · (br)n
tn. (2.1.2)

Identity (2.1.1) was first proved by D.B. Sears [256] as a q-analogue of a result
of J. Thomae [270].

It must be pointed out that in subsequent chapters use is often made of
(2.1.1). In this chapter, we examine only those identities that are primarily a
consequence of (2.1.1) and possibly some further elementary transformations.

Before we proceed to Ramanujan’s discoveries, we note a limiting case [15,
Lemma] of (2.1.1) when c → ∞, namely,

∞∑
n=0

(−1)n(a)n(b)n

(q)n(d)n(e)n

(
de

ab

)n

qn(n−1)/2 =
(e/a)∞
(e)∞

∞∑
n=0

(a)n(d/b)n

(q)n(d)n

( e

a

)n

.

(2.1.3)

2.2 Direct Corollaries of (2.1.1) and (2.1.3)

Entry 2.2.1 (p. 1). For 0 < |aq| < 1,

∞∑
n=0

(−q; q)2nqn

(aq; q2)n+1(q/a; q2)n+1
=

∞∑
n=0

(−q/a; q)2nanqn

(q; q2)n+1(q/a; q2)n+1
.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 3, c© Springer Science+Business Media, LLC 2009
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Proof. In (2.1.1), replace q by q2 and then replace a, b, c, d, and e by q2, −q,
−q2, q3/a, and aq3, respectively. Then multiply both sides by 1/(1− aq) and
by 1/(1 − q/a). ��

Entry 2.2.2 (p. 8). We have

∞∑
n=0

(−q2; q2)nqn+1

(q; q2)n+1
=

∞∑
n=0

(−q; q2)nq(n+1)2

(q; q2)2n+1

.

Proof. In (2.1.3), replace q by q2, and then replace a, b, d, and e by q2, −q,
q3, and q3, respectively. Finally, multiply both sides by q/(1 − q)2. ��

Entry 2.2.3 (p. 42). For arbitrary complex numbers a, b, and c,

(aq)∞
(−bq)∞

∞∑
n=0

(−aq/b)nbnqn(n+1)/2

(q)n(−cq)n
= (aq)∞

∞∑
n=0

(bc/a)nanqn2+n

(q)n(−bq)n(−cq)n
.

We have recorded Entry 2.2.3 as Ramanujan recorded it, that is, with a
common factor (aq)∞ on each side.

Proof. In (2.1.3), let a → ∞, and then replace b, d, and e by bc/a, −cq, and
−bq, respectively. ��

Entry 2.2.4 (p. 42). Let a and b be arbitrary complex numbers. Then

∞∑
n=0

anqn(n+1)/2

(q)n(−bq)n
= (−aq)∞

∞∑
n=0

(−1)n(ab)nqn(3n+1)/2

(q)n(−aq)n(−bq)n
.

Proof. In Entry 2.2.3, let a → 0, and then replace b by a and c by b. ��

2.3 Extended Corollaries of (2.1.1) and (2.1.3)

Entry 2.3.1 (p. 37). Let a be arbitrary and suppose that |bq| < 1. Then

∞∑
n=0

(ab)nqn2

(aq)n(bq)n
= 1 + a

∞∑
n=1

bnqn

(aq)n
, (2.3.1)

∞∑
n=0

(−1)na2nqn2

(a2q2; q2)n
= 1 − a

∞∑
n=1

anqn

(−aq)n
. (2.3.2)

Proof. In (2.1.1), replace a, b, c, d, and e by q, 1/τ , 1/τ , aq, and bq, respec-
tively. Then let τ → 0. After simplification, this yields

∞∑
n=0

(ab)nqn2

(aq)n(bq)n
= (1 − b)

∞∑
n=0

bn

(aq)n
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= 1 +
∞∑

n=1

bn

(aq)n
−

∞∑
n=1

bn

(aq)n−1

= 1 + a

∞∑
n=1

bnqn

(aq)n
,

and so (2.3.1) has been proved.
The identity (2.3.2) is obtained by setting a = −b in (2.3.1) and then

replacing b by a. ��

Entry 2.3.2 (p. 34). Recall that ϕ(q) is defined by (1.4.9). Then

∞∑
n=0

(−1; q)2nqn(n+1)/2

(q; q)n(q; q2)n
=

ϕ(q)
ϕ(−q)

.

Proof. In (2.1.3), replace a, b, d, and e by −1, −1, q1/2, and −q1/2, respec-
tively. Consequently, after simplification and the use of the q-binomial theorem
(1.2.2),

S :=
∞∑

n=0

(−1; q)2nqn(n+1)/2

(q; q)n(q; q2)n

=
(q1/2; q)∞

(−q1/2; q)∞

∞∑
n=0

(−1; q)n(−q1/2; q)nqn/2

(q; q)n(q1/2; q)n

=
(q1/2; q)∞

(−q1/2; q)∞

∞∑
n=0

(−1; q1/2)2nqn/2

(q1/2; q1/2)2n

=
(q1/2; q)∞

2(−q1/2; q)∞

∞∑
n=0

(1 + (−1)n)
(−1; q1/2)nqn/4

(q1/2; q1/2)n

=
(q1/2; q)∞

2(−q1/2; q)∞

(
(−q1/4; q1/2)∞
(q1/4; q1/2)∞

+
(q1/4; q1/2)∞

(−q1/4; q1/2)∞

)
.

Now put the fractions on the right side above under a common denominator,
multiply both the numerator and denominator by (q1/2; q1/2)∞, and simplify
to arrive at

S =
1

2(q; q2)∞(q; q)∞

(
(−q1/4; q1/2)2∞(q1/2; q1/2)∞

+(q1/4; q1/2)2∞(q1/2; q1/2)∞
)

=
1

2(q; q2)∞(q; q)∞

( ∞∑
n=−∞

qn2/4 +
∞∑

n=−∞
(−1)nqn2/4

)
(2.3.3)

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

qn2
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=
ϕ(q)

ϕ(−q)
,

where in the antepenultimate line we used the Jacobi triple product identity
(1.4.8), and then afterward used Euler’s identity and the product representa-
tion from (1.4.9). This completes the proof. ��

Entry 2.3.3 (p. 35). If ϕ(q) and ψ(q) are defined in (1.4.9) and (1.4.10),
respectively, then

∞∑
n=0

(−q; q)2nqn(n+1)/2

(q; q)n(q; q2)n+1
=

ψ(q2)
ϕ(−q)

.

Proof. In (2.1.3), set a = b = −q, d = q3/2, and e = −q3/2, and multiply
both sides of the resulting identity by 1/(1 − q). We proceed in the same
fashion as in the previous proof. In particular, we use the calculation (2.3.3).
Consequently,

∞∑
n=0

(−q; q)2nqn(n+1)/2

(q; q)n(q; q2)n+1
=

(q1/2; q)∞
(−q1/2; q)∞

∞∑
n=0

(−q; q)n(−q1/2; q)nqn/2

(q; q)n(q1/2; q)n+1

=
(q1/2; q)∞

2(−q1/2; q)∞

∞∑
n=0

(−1; q1/2)2n+1q
n/2

(q1/2; q1/2)2n+1

=
(q1/2; q)∞q−1/4

4(−q1/2; q)∞

∞∑
n=0

(1 − (−1)n)
(−1; q1/2)nqn/4

(q1/2; q1/2)n

=
q−1/4

4(q; q2)∞(q; q)∞

( ∞∑
n=−∞

qn2/4 −
∞∑

n=−∞
(−1)nqn2/4

)

=
(−q; q)∞q−1/4

2(q; q)∞

∞∑
n=−∞

q(2n+1)2/4

=
(−q; q)∞
(q; q)∞

∞∑
n=0

qn2+n

=
ψ(q2)
ϕ(−q)

,

where we employed the product representation of ϕ(−q) given in (1.4.9). ��

Entry 2.3.4 (p. 35). Recall that f(a, b) is defined in (1.4.8). Then

∞∑
n=0

(−q2; q4)nqn2+n

(q2; q2)n(q2; q4)n(1 − q2n+1)
=

f(−q6,−q10) + qf(−q2,−q14)
ϕ(−q2)

. (2.3.4)

Proof. We prove Entry 2.3.4 with q replaced by −q. Applying (2.1.3) below
with q replaced by q2, and then setting a = iq, b = −iq, d = q, and e = −q3,
we find that
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S :=
∞∑

n=0

(−q2; q4)nqn2+n

(q2; q2)n(q2; q4)n(1 + q2n+1)

=
1

1 + q

∞∑
n=0

(iq; q2)n(−iq; q2)nqn2+n

(q2; q2)n(−q3; q2)n(q; q2)n

=
1

1 + q

(iq2; q2)∞
(−q3; q2)∞

∞∑
n=0

(iq; q2)n(i; q2)n(iq2)n

(q2; q2)n(q; q2)n

=
(iq2; q2)∞
(−q; q2)∞

∞∑
n=0

(i; q)2n(iq2)n

(q; q)2n

=
(iq2; q2)∞
2(−q; q2)∞

∞∑
n=0

(1 + (−1)n)
(i; q)nin/2qn

(q; q)n

=
(iq2; q2)∞
2(−q; q2)∞

(
(i3/2q; q)∞
(i1/2q; q)∞

+
(−i3/2q; q)∞
(−i1/2q; q)∞

)
,

where we have applied the q-binomial theorem (1.2.2). Putting the terms on
the far right side above under a common denominator and applying the Jacobi
triple product identity (1.4.8), we find that

S =
(iq2; q2)∞

2(−q; q2)∞(iq2; q2)∞

(
(−i1/2q; q)∞(−i−1/2q; q)∞

+(i1/2q; q)∞(i−1/2q; q)∞
)

=
1

2(q; q)∞(−q; q2)∞

(
(−i1/2; q)∞(−i−1/2q; q)∞(q; q)∞

1 + i1/2

+
(i1/2; q)∞(i−1/2q; q)∞(q; q)∞

1 − i1/2

)

=
1

2(q; q)∞(−q; q2)∞

(
1

1 + i1/2

∞∑
n=−∞

in/2qn(n−1)/2

+
1

1 − i1/2

∞∑
n=−∞

(−1)nin/2qn(n−1)/2

)

=
1

2(1 − i)(q; q)∞(−q; q2)∞

(
(1 − i1/2)

∞∑
n=−∞

in/2qn(n−1)/2

+(1 + i1/2)
∞∑

n=−∞
(−1)nin/2qn(n−1)/2

)

=
1

(1 − i)(q; q)∞(−q; q2)∞

( ∞∑
n=−∞

inqn(2n−1) −
∞∑

n=−∞
in+1qn(2n+1)

)
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=
1

(1 − i)(q; q)∞(−q; q2)∞

( ∞∑
n=−∞

inqn(2n−1) − i

∞∑
n=−∞

(−i)nqn(2n−1)

)
,

where we replaced n by −n in the latter sum. Dissecting each sum above
into its even- and odd-indexed terms and applying the triple product identity
(1.4.8) and the product representation for ϕ(−q2) given in (1.4.9), we conclude
that

S =
1 + i

2(q; q)∞(−q; q2)∞

( ∞∑
n=−∞

(−1)nq8n2−2n + i
∞∑

n=−∞
(−1)nq(2n+1)(4n+1)

−i
∞∑

n=−∞
(−1)nq8n2−2n −

∞∑
n=−∞

(−1)nq(2n+1)(4n+1)

)

=
1

(q2; q2)∞(q2; q4)∞

( ∞∑
n=−∞

(−1)nq8n2−2n −
∞∑

n=−∞
(−1)nq8n2+6n+1

)

=
f(−q6,−q10) − qf(−q2,−q14)

ϕ(−q2)
,

which is (2.3.4) with q replaced by −q, as we had intended to prove. ��

Entry 2.3.5 (p. 5). For any complex number b and |aq| < 1,

∞∑
n=0

(q; q2)n(b2q/a; q2)nanqn

(−bq; q)2n+1
=

∞∑
n=0

(−1)n(−aq/b; q)nbnqn(n+1)/2

(aq; q2)n+1
.

Proof. After rearrangement of the series on the left-hand side above, we apply
(1.2.1) with h = 2 and a, b, c, and t replaced by b2q/a, q, −bq2, and aq,
respectively, to deduce that

S :=
∞∑

n=0

(q; q2)n(b2q/a; q2)nanqn

(−bq; q)2n+1

=
1

1 + bq

∞∑
n=0

(b2q/a; q2)n(q; q)2nanqn

(q2; q2)n(−bq2; q)2n

=
(q; q)∞(b2q2; q2)∞
(−bq; q)∞(aq; q2)∞

∞∑
n=0

(−bq; q)n(aq; q2)nqn

(q; q)n(b2q2; q2)n

=
(q; q)∞(bq; q)∞

(aq; q2)∞

∞∑
n=0

(aq; q2)nqn

(q; q)n(bq; q)n

=
(q; q)∞(bq; q)∞

(aq; q2)∞

(
√

aq; q)∞(−q
√

aq; q)∞
(q; q)∞(bq; q)∞

∞∑
n=0

(b
√

q/a; q)n(aq)n/2

(−q
√

aq; q)n
,

by another application of (1.2.1), this time with h = 1 and a, b, c, and t
replaced by −√

aq,
√

aq, bq, and q, respectively. Simplify the far right side
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above and then apply (2.1.3) with a = q, then with d = −a1/2q3/2 and
e = a1/2q3/2, with b replaced by −aq/b, and with both sides multiplied by
1/(1 −√

aq) and 1/(1 +
√

aq). Accordingly, we find that

S =
∞∑

n=0

(b
√

q/a; q)n(aq)n/2

(−√
aq; q)n+1

=
∞∑

n=0

(−1)n(−aq/b; q)nbnqn(n+1)/2

(aq; q2)n+1
,

which is what we wanted to prove. ��



3

Bilateral Series

3.1 Introduction

In this chapter, we collect a number of formulas from the lost notebook that
relate to classical bilateral q-hypergeometric series, defined by [151, p. 125]

rψr

(
a1, a2, . . . , ar

b1, b2, . . . , br
; q, t
)

=
∞∑

n=−∞

(a1, a2, . . . , ar; q)n

(b1, b2, . . . , br; q)n
tn,

where, for any integer n,

(a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n,

with

(a; q)n =
∞∏

j=0

1 − aqj

1 − aqj+n
.

In particular,

(a; q)−n =
(−1)na−nqn(n+1)/2

(q/a; q)n
. (3.1.1)

Moreover, the quintuple product identity

∞∑
n=−∞

(−1)nqn(3n−1)/2z3n(1 + zqn) = (−z,−q/z, q; q)∞(qz2, q/z2; q2)∞

(3.1.2)
fits reasonably well in this chapter. Ramanujan stated the quintuple product
identity only once in his extant writings, namely, on page 207 in his lost
notebook. In order to state this identity in the form given by Ramanujan,
recall from (1.4.8) the definition of Ramanujan’s theta function f(a, b). Also,
in Ramanujan’s notation, set

f(−q) = (q; q)∞. (3.1.3)

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 4, c© Springer Science+Business Media, LLC 2009
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Entry 3.1.1 (p. 207). Provided all arguments below are of modulus less than
1, we have

f(−λq,−q2)
f(−q,−λq2)

f(−λq3) = f(−λ2q3,−λq6) + qf(−λ,−λ2q9).

An excellent survey describing all known proofs of the quintuple product
identity has been prepared by S. Cooper [140]. A finite form of the quintuple
product identity was established by P. Paule [227] and later by W.Y.C. Chen,
W. Chu, and N.S.S. Gu [122], and by Chu [128]. A proof of the quintuple
product identity by S. Bhargava, C. Adiga, and M.S. Mahadeva Naika [82]
was written after the appearance of Cooper’s survey. Lastly, we remark that a
bijective proof of the quintuple product identity had long been sought; S. Kim
[191] has recently devised such a proof.

In Section 3.2, we examine those identities associated with Ramanujan’s
famous 1ψ1 summation

1ψ1

(
a
b
; q, z

)
=

(q, b/a, az, q/(az); q)∞
(b, q/a, z, b/(az); q)∞

, (3.1.4)

where |b/a| < |z| < 1.
Section 3.3 is devoted to a variety of formulas connected with the 2ψ2

summation and identities proved initially by W.N. Bailey [43]. Next, we focus
attention on results intimately connected with the quintuple product identity.
We conclude in Section 3.6 with several identities that are clearly appropriate
for this chapter but do not fit into the other sections.

3.2 Background

The work in this chapter is primarily based on the celebrated 1ψ1 summation
(3.1.4) and the quintuple product identity (3.1.2) as well as three lesser-known
results of W.N. Bailey [42]. Since the 1ψ1 summation is central to this chapter
and is one of Ramanujan’s most famous theorems, it seems appropriate here
to give a brief history of this epic theorem.

The 1ψ1 summation theorem was first recorded by Ramanujan in his sec-
ond notebook [243, Chapter 16, Entry 17], [54, p. 32]. However, because his
notebooks were not published until 1957, it was not brought before the math-
ematical public until 1940, when G.H. Hardy recorded Ramanujan’s 1ψ1 sum-
mation theorem in his treatise on Ramanujan’s work [174, pp. 222–223]. Sub-
sequently, the first published proofs were given in 1949 and 1950 by W. Hahn
[172] and M. Jackson [185], respectively. Since these first two proofs, several
others have been published, namely, by Andrews [11], [12], M.E.H. Ismail
[184], Andrews and R. Askey [29], Askey [39], C. Adiga, Berndt, Bhargava,
and G.N. Watson [3], K.W.J. Kadell [187], N.J. Fine [149, equation(18.3)],
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K. Mimachi [221], M. Schlosser [253], S.H. Chan [116], S. Corteel and J. Love-
joy [144], Corteel [143], A.J. Yee [285], W. Chu [127], and V.J.W. Guo and
Schlosser [169]. The proof given in [3] and reproduced in [54, Entry 17, p. 32]
was, in fact, first given in lectures at the University of Mysore by K. Venkat-
achaliengar in the 1960s and appeared later in his monograph [272, p. 30].
The proof of Chan [116] employs partial fractions, which appear to have been
central in much of Ramanujan’s work. The most succinct proof of (3.1.4)
was given by Ismail [184]. It consists in the observation that if b = qm for
any integer m > 0, then (3.1.4) is merely an instance of (1.2.2). However, this
completely proves (3.1.4), because the identity holds on a convergent sequence
within the domain of analyticity |b| < 1. W.N. Bailey’s [43] proof of (3.1.2) is
quite simple. Let us denote the right-hand side by r(z). Bailey observes that
r(z) satisfies the q-difference equation

r(z) = z3q r(zq). (3.2.1)

He then expands r(z) in a Laurent series that yields the left-hand side up to a
constant term c0(q). By setting z = 1 and invoking the Jacobi triple product
identity (1.4.8), he concludes that c0(q) = 1. The proofs by Corteel [143] and
Yee [285] are combinatorial. In particular, Yee devised a bijection between the
partitions generated on each side of the 1ψ1 identity. Chu’s proof [127] using
the classical tool of partial summation is also markedly different from other
proofs. There is also an unpublished proof by Z.-G. Liu [212]. W.P. Johnson
[186], in a delightful historical article, points out that had not Cauchy made
a mistake, he could have discovered the 1ψ1 summation theorem in 1843.
Lastly, Schlosser [254] has derived a noncommutative version of Ramanujan’s
1ψ1 summation formula.

The aforementioned three formulas of Bailey [42] are given by

2ψ2

(
α, β,
γ, δ

; q, z
)

=
(δq/(αβz), γ/β, αz, δ/α; q)∞

(q/β, γδ/(αβz), δ, z; q)∞
2ψ2

(
αβz/δ, α

αz, γ
; q,

δ

α

)
, (3.2.2)

2ψ2

(
α, β,
γ, δ

; q, z
)

=
(αz, βz, γq/(αβz), δq/(αβz); q)∞

(q/α, q/β, γ, δ; q)∞
2ψ2

(
αβz/γ, αβz/δ

αz, βz
; q,

γδ

αβz

)
,

(3.2.3)

and

2ψ2

(
e, f

aq/c, aq/d
; q,

aq

ef

)
=

(q/c, q/d, aq/e, aq/f ; q)∞
(aq, q/a, aq/(cd), aq/(ef); q)∞

×
∞∑

n=−∞

(q
√

a,−q
√

a, c, d, e, f ; q)n

(
√

a,−
√

a, aq/c, aq/d, aq/e, aq/f ; q)n

(
a3q

cdef

)n

qn2
. (3.2.4)
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Bailey [42] deduced (3.2.2) by multiplying together two instances of an
identity equivalent to (3.1.4). However, one can also give a proof in the spirit
of Ismail’s aforementioned proof [184]. Namely, if γ = qm, with m being a
positive integer, then (3.2.2) reduces to an instance of (1.2.9). This proves
(3.2.2) in full, because the identity holds on a convergent sequence within the
domain of analyticity |γ| < 1.

Bailey [42] observed that (3.2.3) follows by applying (3.2.2) to itself.
Finally, (3.2.4) follows from equation (12.2.1) of Part I [31, p. 262]. To see

this, replace c by aq/γ. Now, if γ = qm, where m is a positive integer, then
(3.2.4) reduces to an instance of (12.2.1) from Part I. This proves (3.2.4) in
general, since the identity holds on a convergent sequence within the domain
of analyticity |γ| < 1.

3.3 The 1ψ1 Identity

We begin by noting that in fact Ramanujan had a disguised form of (3.1.4)
in full generality in the lost notebook.

Entry 3.3.1 (p. 7). For |abq2/c| < |bq| < 1,

∞∑
n=0

(cq/b; q2)n

(aq; q2)n+1

bnqn −
∞∑

n=0

(q/a; q2)n

(bq/c; q2)n+1

anqn

cn+1

= (1 − c−1)
(q2/c, abq2/c, q2, cq2; q2)∞
(aq/c, bq/c, aq, bq; q2)∞

. (3.3.1)

Proof. In (3.1.4), replace q by q2, and then set z = bq, a = cq/b, and b = aq3;
then split the 1ψ1 series into two sums, the first with all the nonnegative
indices, and the second with the negative indices. Finally, multiply both sides
by 1/(1 − aq). Applying (3.1.1) to the negative indices, we find that the left-
hand side of (3.1.4) becomes

1
1 − aq

∞∑
n=−∞

(cq/b; q2)n

(aq3; q2)n

bnqn

=
∞∑

n=0

(cq/b; q2)n

(aq; q2)n+1

bnqn +
1

1 − aq

∞∑
n=1

(cq/b)−n(q2/(aq3); q2)n

(aq3)−n(bq2/(cq); q2)n

b−nq−n

=
∞∑

n=0

(cq/b; q2)n

(aq; q2)n+1

bnqn −
∞∑

n=1

(q/a; q2)n−1

(bq/c; q2)n

(aq)n−1

cn . (3.3.2)

This reduces to the left-hand side of (3.3.1). It is easily checked that the right-
hand side of (3.1.4) reduces to the right-hand side of the above. Thus, this
entry is, indeed, identity (3.1.4) in full generality. ��
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Entry 3.3.2 (p. 370). If k = ab, |k| < 1, and n is any complex number, then

(−a/n; k)∞(−bn; k)∞(k; k)2∞
(a; k)∞(b; k)∞(−nk; k)∞(−k/n; k)∞

= 1 + (n + 1)
∞∑

j=1

(
aj

n + kj
+

bj

1 + nkj

)
.

(3.3.3)

Proof. On page 354 of his second notebook, Ramanujan claimed that

f(a/n, bn)f3(−ab)
n f(−a,−b)f(nab, 1/n)

=
1

n + 1
+

∞∑
j=1

(
aj

n + (ab)j
+

bj

1 + n(ab)j

)
, (3.3.4)

where f(a, b) is defined by (1.4.8) and f(−q) is defined by (3.1.3). The identity
(3.3.4) was proved by Berndt in [56, p. 152, Entry 17]. Comparing (3.3.3) with
(3.3.4), we see that we need to show that

(−a/n; k)∞(−bn; k)∞(k; k)2∞
(a; k)∞(b; k)∞(−nk; k)∞(−k/n; k)∞

=
(n + 1)f(a/n, bn)f3(−k)
nf(−a,−b)f(nk, 1/n)

. (3.3.5)

However, with the use of the Jacobi triple product identity (1.4.8), this is an
easy exercise. ��

The next result is the same as Entry 3.3.2, but in a different notation.
In this entry on page 312, Ramanujan uses the notation f(x, y), but it does
not denote Ramanujan’s usual theta function defined in (1.4.8). Therefore, we
have replaced f(x, y) by F (x, y) below.

Entry 3.3.3 (p. 312). For any complex numbers x and y with |x| < 1, let

F (x, y) :=
∞∑

k=−∞
xk2

yk.

Then, for complex numbers a, b, and n with |ab| < 1,

F (
√

ab, n
√

b/a)(ab; ab)3∞
nF (

√
ab,−

√
b/a)F (

√
ab, n

√
ab)

=
1

n + 1
+

∞∑
j=1

(
aj

n + (ab)j
+

bj

1 + n(ab)j

)
.

(3.3.6)

Proof. First observe that F (x, y) = f(xy, x/y), in the notation (1.4.8). Thus,
if we rewrite (3.3.6) in the notation of f(x, y), we obtain precisely (3.3.4).
Hence, (3.3.6) is equivalent to Entry 3.3.2, and so the proof is complete. ��

Entry 3.3.4 (p. 47).

(q3; q3)3∞
(q; q)∞

=
∞∑

n=0

qn

1 − q3n+1 −
∞∑

n=0

q2n+1

1 − q3n+2 (3.3.7)

=
∞∑

n=0

1 + q3n+1

1 − q3n+1
q3n2+2n −

∞∑
n=0

1 + q3n+2

1 − q3n+2
q3n2+4n+1. (3.3.8)
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Proof. We first show that the right-hand side in the first line of (3.3.7) reduces
to an instance of (3.1.4). More precisely,

∞∑
n=0

qn

1 − q3n+1 −
∞∑

n=1

q2n−1

1 − q3n−1 =
∞∑

n=−∞

qn

1 − q3n+1

=
1

1 − q
1ψ1

(
q
q4 ; q3, q

)

=
(q3; q3)2∞(q; q3)∞(q2; q3)∞

(q; q3)2∞(q2; q3)2∞

=
(q3; q3)3∞
(q; q)∞

.

The last equality in (3.3.7) follows from the following general considera-
tions. For arbitrary positive integers j and k,

∞∑
n=0

qkn

1 − qjn+k
=

∞∑
n=0

∞∑
m=0

qkn+km+jnm

=
∞∑

n=0

⎛
⎝∑

m>n

+
∑

0≤m≤n

⎞
⎠ qkn+km+jnm

=
∞∑

n=0

∞∑
m=0

qkn+k(m+n+1)+jn(m+n+1) +
∞∑

m=0

∞∑
n=0

qk(n+m)+km+j(n+m)m

=
∞∑

n=0

qjn2+(j+2k)n+k

1 − qjn+k
+

∞∑
m=0

qjm2+2km

1 − qjm+k

=
∞∑

n=0

qjn2+2kn(1 + qjn+k)
1 − qjn+k

,

where in the latter sum in the penultimate line we replaced m by n.
The case j = 3, k = 1 in the calculation above immediately yields

∞∑
n=0

qn

1 − q3n+1 =
∞∑

n=0

q3n2+2n(1 + q3n+1)
1 − q3n+1

, (3.3.9)

while the case j = 3, k = 2 yields, after multiplying both sides by q,

∞∑
n=0

q2n+1

1 − q3n+2 =
∞∑

n=0

q3n2+4n+1(1 + q3n+2)
1 − q3n+2

. (3.3.10)

Thus, substituting the right sides of (3.3.9) and (3.3.10) into the first line of
(3.3.7), we immediately establish the final portion of Entry 3.3.4. ��
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The right-hand side (3.3.8) can be written in a more symmetric form as a
bilateral series

(q3; q3)3∞
(q; q)∞

= q−1/3
∞∑

k=−∞

1 + q3k+1

1 − q3k+1
q(3k+1)2/3.

Moreover, the previous right-hand side (3.3.7) may be written in the symmet-
ric form

(q3; q3)3∞
(q; q)∞

= q−1/3
∞∑

j=0

∞∑
k=0

{
q(3j+1)(3k+1)/3 − q(3j+2)(3k+2)/3

}
. (3.3.11)

If Clausen’s transformation [54, p. 113] is applied to the double series in
(3.3.11), we find that

(q3; q3)3∞
(q; q)∞

= q−1/3
∞∑

n=−∞

(n

3

) qn2/3

1 − qn
,

where
(

n
3

)
denotes the Legendre symbol. The function on the right-hand sides

of (3.3.7), (3.3.8), and (3.3.11) is equal to 1
3q−1/3c(q), where c(q) is one of the

cubic theta functions of J.M. and P.B. Borwein [90] defined by

c(q) :=
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 .

For a proof of this remark, see Berndt’s book [57, p. 109, Lemma 5.1, equation
(5.5)]. The function c(q) is crucial in the development of Ramanujan’s cubic
theory of elliptic functions set out by Ramanujan in his second notebook [243,
pp. 257–262] and first established by Berndt, Bhargava, and F.G. Garvan [60],
[57, Chapter 33]. Undoubtedly, Ramanujan was the first to prove (3.3.7), but
the first proof in print was probably that of Fine in his book [149, p. 79,
equation (32.35)]. Another proof has been given by L.-C. Shen [258].

The identity (3.3.7) can be greatly generalized. For |q| < |x| < 1 and any
number y,

(xy; q)∞(q/(xy); q)∞(q; q)2∞
(x; q)∞(q/x; q)∞(y; q)∞(q/y; q)∞

=
∞∑

n=−∞

xn

1 − yqn
. (3.3.12)

If we replace q by q3 in (3.3.12) and then set x = y = q, we readily find
that (3.3.12) reduces to (3.3.7). We are uncertain who first proved (3.3.12).
The earliest reference for (3.3.12) known to us is by L. Kronecker [196], [197,
pp. 309–318] ; see A. Weil’s monograph [282, pp. 70–71] for an account of Kro-
necker’s proof. Another proof can be found in K. Venkatachaliengar’s mono-
graph [272, p. 37]. A short proof can be found in S.H. Chan’s thesis [117]
and paper [118]. Special cases of (3.3.12) are useful in deriving Lambert series
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identities arising in the number of representations of an integer as a sum of
squares or triangular numbers [115], [139], [258]. Its relation to Chapter 16 of
Ramanujan’s original second notebook is found in [27].

A further generalization of (3.3.7) and (3.3.12) involving one additional
variable was discovered by S. McCullough and Shen [220] and by Andrews,
R. Lewis, and Liu [37, Theorem 1]. A simpler proof was found by S.H. Chan
[117], [118]. This identity is also equivalent to an identity for Lambert series
found by K. Venkatachaliengar [272, p. 37] and elaborated upon in more de-
tail by S. Cooper [139]. However, the aforementioned generalization of these
authors is actually equivalent to an identity for the Weierstrass σ- and ζ-
functions, which was given by G. Halphen [173]. This identity,

σ(a + b)σ(a − b)
σ(a + c)σ(a − c)σ(b + c)σ(b − c)

=
1

σ(2c)
(ζ(a + c) − ζ(a − c) + ζ(b − c) − ζ(b + c)) ,

can be deduced from an exercise in Whittaker and Watson’s text [283, p. 451,
Exercise 5] that is originally due to C. Weierstrass, namely,

σ(a + b)σ(a − b)σ(c + d)σ(c − d) + σ(b + c)σ(b − c)σ(a + d)σ(a − d)
+ σ(c + a)σ(c − a)σ(b + d)σ(b − d) = 0,

by dividing both sides by c − d and letting d → c.
The final entry for this section is, as we shall see, merely a transformed

version of identity (3.1.4).

Entry 3.3.5 (p. 1). For |q/a| < |1/b| < 1 and abc �= 0,

∞∑
n=0

(−q/c; q)n

(−q/a; q)n(−q/b; q)n

( c

ab

)n

qn(n−1)/2

+ (1 + a−1)(1 + b−1)
∞∑

n=1

(−q/c; q)n−1

(aq/c; q)n(bq/c; q)n

(
ab

c

)n

qn(n+1)/2

=
(−q/c; q)∞

(aq/c, bq/c,−q/a,−q/b; q)∞

∞∑
n=0

(
anbn

cn +
cn+1

an+1bn+1

)
qn(n+1)/2.

(3.3.13)

Proof. We begin by noting that, by the Jacobi triple product identity (1.4.8),

∞∑
n=0

(
anbn

cn +
cn+1

an+1bn+1

)
qn(n+1)/2 =

∞∑
n=−∞

(
ab

c

)n

qn(n+1)/2

= (−abq/c; q)∞(−c/(ab); q)∞(q; q)∞.

Therefore, the right-hand side of (3.3.13) is, in fact, equal to
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(−q/c, q,−abq/c,−c/(ab); q)∞
(aq/c, bq/c,−q/a,−q/b; q)∞

. (3.3.14)

Next, we apply (2.1.1) to the first sum on the left-hand side of (3.3.13) with
a, b, c, d, and e replaced respectively by q, −q/c, −1/τ , −q/a, and −q/b, and
then let τ tend to 0 to obtain
∞∑

n=0

(−q/c; q)n

(−q/a; q)n(−q/b; q)n

( c

ab

)n

qn(n−1)/2 = lim
τ→0

3φ2

(
q,−q/c,−1/τ
−q/a,−q/b

; q,
cτ

ab

)

= (1 + b−1)
∞∑

n=0

(−1)n(c/a; q)n

(−q/a; q)n
b−n.

(3.3.15)

Applying (2.1.1) to the second sum on the left-hand side of (3.3.13) with a,
b, c, d, and e replaced respectively by q, −q2/τ , −q/c, aq2/c, and bq2/c and
then letting τ tend to 0, we deduce that

∞∑
n=1

(−q/c; q)n−1

(aq/c; q)n(bq/c; q)n

(
ab

c

)n

qn(n+1)/2

=
abq/c

(1 − aq/c)(1 − bq/c)
lim
τ→0

3φ2

(
q,−q2/τ,−q/c
aq2/c, bq2/c

; q,
τab

c

)

=
abq

c(1 − aq/c)

∞∑
n=0

(−aq; q)n

(aq2/c; q)n

(
bq

c

)n

. (3.3.16)

Hence, using (3.3.14)–(3.3.16) in (3.3.13), we see that we can reduce the proof
of Entry 3.3.5 to proving the assertion

(1 + b−1)
∞∑

n=0

(−1)n(c/a; q)n

(−q/a; q)n
b−n

+
abq(1 + a−1)(1 + b−1)

c(1 − aq/c)

∞∑
n=0

(−aq; q)n

(aq2/c; q)n

(
bq

c

)n

=
(−q/c, q,−abq/c,−c/(ab); q)∞
(aq/c, bq/c,−q/a,−q/b; q)∞

. (3.3.17)

By (3.1.1), we find that

−∞∑
n=−1

(−1)n(c/a; q)n

(−q/a; q)n
b−n =

∞∑
n=1

(−a; q)n

(aq/c; q)n

(
bq

c

)n

(3.3.18)

=
(1 + a)

(1 − aq/c)

∞∑
n=0

(−aq; q)n

(aq2/c; q)n

(
bq

c

)n+1

.

Substituting (3.3.18) into (3.3.17) and then multiplying the resulting identity
by 1/(1 + b−1), we find that (3.3.17) reduces to
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∞∑
n=−∞

(−1)n(c/a; q)n

(−q/a; q)n
b−n =

(−q/c, q,−abq/c,−c/(ab); q)∞
(aq/c, bq/c,−q/a,−1/b; q)∞

, (3.3.19)

and this is merely (3.1.4) with a, b, and z replaced by c/a, −q/a, and −1/b,
respectively.

We have ignored needed conditions on a, b, and c in our proof. However,
if we translate the hypotheses necessary for the validity of (3.1.4) into those
needed for Entry 3.3.5 to hold, we arrive at the hypotheses given for Entry
3.3.5. ��

3.4 The 2ψ2 Identities

Entry 3.4.1 (pp. 6, 14). Let a denote any complex number. Recall that
f(a, b) and ψ(q) are defined by (1.4.8) and (1.4.10), respectively. Then

∞∑
n=0

(−aq; q2)n

(aq; q)2n
anqn2

+
∞∑

n=1

(1/a; q)2n

(−q/a; q2)n

qn

=
ψ(q)

(
f(a3q2, a−3q4) + a f(a3q4, a−3q2)

)
(aq; q)∞(−q/a; q2)∞f(a, q2/a)

. (3.4.1)

Proof. We begin by observing that, by (3.1.1),

(−aq; q2)−n

(aq; q)−2n
a−nq(−n)2 =

(q/aq; q)2n(aq)−nqn(n+1)

(q2/(−aq); q2)n(−aq)−2nq2n(2n+1)/2
a−nqn2

=
(1/a; q)2n

(−q/a; q2)n

qn.

Now use (3.2.4) with q replaced by q2, a replaced by a2, and c, d, e, and
f replaced by aq, a, −q/τ , and −aq, respectively. Using also the calculation
above and letting τ tend to 0, we find that

∞∑
n=0

(−aq; q2)n

(aq; q)2n
anqn2

+
∞∑

n=1

(1/a; q)2n

(−q/a; q2)n

qn

=
∞∑

n=−∞

(−aq; q2)n

(aq; q)2n
anqn2

= lim
τ→0

2ψ2

(
−q/τ, −aq
aq, aq2 ; q2, aτ

)

=
(q/a; q2)∞(q2/a; q2)∞(−aq; q2)∞
(a2q2; q2)∞(q2/a2; q2)∞(q; q2)∞

∞∑
n=−∞

1 + aq2n

1 + a
a3nqn(3n−1)

=
(q/a; q)∞(−aq; q2)∞

(aq; q)∞(−a; q)∞(q/a; q)∞(−q/a; q)∞(q; q2)∞

∞∑
n=−∞

(1 + aq2n)a3nqn(3n−1)
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=
(q2; q2)∞

(
f(a3q2, a−3q4) + a f(a3q4, a−3q2)

)
(aq; q)∞(−a; q2)∞(−q/a; q2)∞(−q2/a; q2)∞(q; q2)∞(q2; q2)∞

=
(q2; q2)∞
(q; q2)∞

(
f(a3q2, a−3q4) + a f(a3q4, a−3q2)

)
(aq; q)∞(−q/a; q2)∞

× 1
(−a; q2)∞(−q2/a; q2)∞(q2; q2)∞

.

Applying (1.4.10) and (1.4.8) on the far right side above, we arrive at the
right-hand side of (3.4.1). ��

The next entry is a natural companion to Entry 3.4.1.

Entry 3.4.2 (p. 14). Let a denote any complex number. Recall that f(a, b)
and ψ(q) are defined by (1.4.8) and (1.4.10), respectively. Then

∞∑
n=0

(−aq; q2)n

(aq; q)2n+1
an+1q(n+1)2 −

∞∑
n=1

(1/a; q)2n−1

(−q/a; q2)n

qn

=
qψ(q)f(q6/a3, a3)

a(aq; q)∞(−q/a; q2)∞f(q2/a, a)
. (3.4.2)

Proof. We begin by observing that, by (3.1.1),

(−aq; q2)−n

(aq; q)−2n+1
a−n+1q(−n+1)2 = − (1/a; q)2n−1

(−q/a; q2)n

qn.

So we see that
∞∑

n=0

(−aq; q2)n

(aq; q)2n+1
an+1q(n+1)2 −

∞∑
n=1

(1/a; q)2n−1

(−q/a; q2)n

qn

=
∞∑

n=−∞

(−aq; q2)n

(aq; q)2n+1
an+1q(n+1)2 . (3.4.3)

Apply (3.2.4) with q replaced by q2, a replaced by a2q2, and then c, d, e, and
f replaced by aq2, aq, −1/τ , and −aq, respectively. Letting τ tend to 0, we
find that

∞∑
n=−∞

(−aq; q2)n

(aq; q)2n+1
an+1q(n+1)2

=
aq

1 − aq
lim
τ→0

2ψ2

(
−1/τ, −aq
aq2, aq3 ; q2, aτq3

)

=
aq

1 − aq

(1/a, q/a,−aq3; q2)∞
(a2q4, 1/a2, q; q2)∞

∞∑
n=−∞

q3n2+3na3n. (3.4.4)
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Replacing the index of summation n by −n−1, simplifying the products, and
using the Jacobi triple product identity (1.4.8) twice and (1.4.10) once, we
find from (3.4.4) that

∞∑
n=−∞

(−aq; q2)n

(aq; q)2n+1
an+1q(n+1)2

=
aq(1/a; q)∞(−aq; q2)∞

(aq; q)∞(−aq; q)∞(1/a; q)∞(−1/a; q)∞(q; q2)∞

∞∑
n=−∞

q3n2+3na−3n−3

=
a−2q(q2; q2)∞

(q; q2)∞

f(q6/a3, a3)
(aq; q)∞(−q/a; q2)∞

1
(−aq2; q2)∞(−1/a; q2)∞(q2; q2)∞

=
a−2qψ(q)f(q6/a3, a3)

(aq; q)∞(−q/a; q2)∞f(1/a, aq2)
. (3.4.5)

Use the identity a f(1/a, aq2) = f(q2/a, a), which is a consequence of (1.4.13),
in (3.4.5). Then substitute (3.4.5) into (3.4.3). We thus obtain the right-hand
side of (3.4.2) to complete the proof. ��

The next entry is an immediate corollary of Entry 3.4.1.

Entry 3.4.3 (pp. 6, 16).

∞∑
n=0

(−1)n(q; q2)n

(−q; q)2n
qn2

+ 2
∞∑

n=1

(−q; q)2n−1

(q; q2)n

qn

=
(−q; q2)∞
ϕ(−q2)

(
1 + 6

∞∑
n=0

q6n+2

1 − q6n+2 − 6
∞∑

n=0

q6n+4

1 − q6n+4

)
. (3.4.6)

Proof. The left-hand side of (3.4.6) is the left-hand side of Entry 3.4.1 at
a = −1. On the other hand, for the right-hand side of (3.4.1), by (1.4.8),

lim
a→−1

ψ(q)
(
f(a3q2, a−3q4) + a f(a3q4, a−3q2)

)
(aq; q)∞(−q/a; q2)∞f(a, q2/a)

=
(q2; q2)∞

(q; q2)∞(−q; q)∞(q; q2)∞

× lim
a→−1

(−a3q2,−a−3q4, q6; q6)∞ + a(−a3q4,−a−3q2, q6; q6)∞
(−a,−a−1q2, q2; q2)∞

=
1

(q; q2)∞(q2; q2)2∞

× lim
a→−1

(−a3q2,−a−3q4, q6; q6)∞ + a(−a3q4,−a−3q2, q6; q6)∞
1 + a

=
(q6; q6)∞

(q; q2)∞(q2; q2)2∞
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× lim
a→−1

(q2; q6)∞(q4; q6)∞

{
d

da
log{(−a3q2; q6)∞(−a−3q4; q6)∞}

+
d

da
a + a

d

da
log{(−a3q4; q6)∞(−a−3q2; q6)∞}

}

=
(q2; q2)∞

(q; q2)∞(q2; q2)2∞

(
1 +

∞∑
n=0

6q6n+2

1 − q6n+2 −
∞∑

n=0

6q6n+4

1 − q6n+4

)

=
(−q; q2)∞(−q2; q2)∞

(q2; q2)∞

(
1 +

∞∑
n=0

6q6n+2

1 − q6n+2 −
∞∑

n=0

6q6n+4

1 − q6n+4

)
,

by Euler’s identity. This last expression is equivalent to the right-hand side of
(3.4.6) upon an application of (1.4.9). ��

Entry 3.4.4 (p. 14).

∞∑
n=0

(−q; q2)n

(q; q)2n+1
q(n+1)2 =

qψ(q6)
ψ(−q)

. (3.4.7)

Proof. Set a = 1 in Entry 3.4.2. The resulting left-hand side is the left-hand
side of (3.4.7). The right-hand side of (3.4.2), with applications of (1.4.10)
and (1.4.8), becomes

qψ(q)f(q6, 1)
(q; q)∞(−q; q2)∞f(q2, 1)

=
qψ(q)2ψ(q6)

(q; q)∞(−q; q2)∞2ψ(q2)

=
q(q2; q2)∞(q2; q4)∞ψ(q6)

(q; q)∞(−q; q2)∞(q; q2)∞(q4; q4)∞

=
qψ(q6)

(q; q2)∞(q4; q4)∞

=
qψ(q6)

(q; q4)∞(q3; q4)∞(q4; q4)∞

=
qψ(q6)
ψ(−q)

,

and this completes the proof. ��

Entry 3.4.4 is due to Slater [262, equation (50)].

Entry 3.4.5 (p. 14).

∞∑
n=0

(−q; q2)n

(q; q)2n+1
qn =

ψ(−q3)
ϕ(−q)

. (3.4.8)

Proof. Apply (1.2.10) with q replaced by q2 and b = −q, c = q3, and t = q.
Letting a tend to 0, we find that
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∞∑
n=0

(−q; q2)n

(q; q)2n+1
qn =

1
1 − q

∞∑
n=0

(−q; q2)n

(q2; q2)n(q3; q2)n

qn

=
1

(q; q2)∞

∞∑
n=0

(−q2; q2)n

(q; q)2n+1
qn2+n. (3.4.9)

We apply Entry 3.4.1 with a = q, employ the identity qf(q7, q−1) = f(q, q5),
deducible from (1.4.13), and use (3.4.9), (1.4.8), (1.4.10), and (1.4.9) twice to
deduce that

∞∑
n=0

(−q; q2)n

(q; q)2n+1
qn =

1
(q; q2)∞

ψ(q)
(
f(q5, q) + qf(q7, q−1)

)
(q; q)∞(−1; q2)∞ϕ(q)

=
(q2; q2)∞2f(q, q5)

(q; q2)2∞(q; q)∞2(−q2; q2)∞(−q; q2)2∞(q2; q2)∞

=
(−q; q6)∞(−q5; q6)∞(q6; q6)∞

(q2; q4)∞(q; q)∞

=
(−q; q2)∞(q6; q6)∞

(q2; q4)∞(q; q)∞(−q3; q6)∞

=
(−q; q2)∞(q3; q6)∞(q6; q6)∞
(q2; q4)∞(q; q)∞(q6; q12)∞

=
(−q; q2)∞(q3; q12)∞(q6; q12)∞(q9; q12)∞(q12; q12)∞

(q2; q4)∞(q; q)∞(q6; q12)∞

=
f(−q3,−q9)

(q; q2)∞(q; q)∞

=
ψ(−q3)
ϕ(−q)

,

as desired. ��

Entry 3.4.6 (p. 22).

∞∑
n=1

q2n2−n

(q; q2)n

+
∞∑

n=0

(−1)n(q; q2)nqn2+n = (q2; q2)2∞
∞∑

n=0

qn(n+1)/2

(q; q)2n
. (3.4.10)

Proof. We begin by noting that, by (3.1.1),

(−1)−n(q; q2)−nq(−n)2−n =
q2n2−n

(q; q2)n

.

Using first the equality above, employing secondly (3.2.3) with q replaced by
q2 and with α = q/τ , β = q, δ = γ = τ , and z = qτ , thirdly letting τ tend to
0, and fourthly applying Entry 1.5.3, we find that
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∞∑
n=1

q2n2−n

(q; q2)n

+
∞∑

n=0

(−1)n(q; q2)nqn2+n =
∞∑

n=−∞
(−1)n(q; q2)nqn2+n

= lim
τ→0

2ψ2

(
q/τ, q
τ, τ

; q2, qτ

)

=
(q2; q2)∞
(q; q2)∞

lim
τ→0

2ψ2

(
q3/τ, q3/τ
q2, q2τ

; q2, τ2/q3

)

= (−q; q)∞(q2; q2)∞
∞∑

n=0

q2n2+n

(q2; q2)n

=
(−q; q)∞(q2; q2)∞

(q; q2)∞

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n

= (q2; q2)2∞
∞∑

n=0

qn(n+1)/2

(q; q)2n
,

where we invoked Entry 1.5.3, and next applied (1.2.1) with h = 1, a = q/t,
and c = −q, and then let b and t tend to 0. This completes the proof. ��

Entry 3.4.7 (p. 15). For a, b �= 0,

∞∑
n=0

a−n−1b−n

(−1/a; q)n+1(−q/b; q)n
qn2

+
∞∑

n=1

(−aq; q)n−1(−b; q)nqn (3.4.11)

=
(−aq; q)∞

(q; q)∞(−q/b; q)∞

( ∞∑
n=0

bnqn(n+1)/2

1 + aqn +
1
a

∞∑
n=1

b−nqn(n+1)/2

1 + qn/a

)
.

Proof. In light of the fact that, by (3.1.1),

a−(−n)−1bnq(−n)2

(−1/a; q)−n+1(−q/b; q)−n
= (−aq; q)n−1(−b; q)nqn,

and
b−nq(−n)(−n+1)/2

1 + aq(−n)
=

a−1b−nqn(n+1)/2

1 + qn/a
,

we see that we may rewrite (3.4.11) as

∞∑
n=−∞

a−n−1b−n

(−1/a; q)n+1(−q/b; q)n
qn2

=
(−aq; q)∞

a(q; q)∞(−q/b; q)∞

∞∑
n=−∞

b−nqn(n+1)/2

1 + qn/a
.

(3.4.12)
This last identity is, after simplification, the special case of (3.2.2) in which
we let α = β = 1/τ , γ = −q/a, δ = −q/b, and z = qτ2/(ab), multiply both
sides of (3.2.2) by 1/(1 + a), and then let τ tend to 0. ��



68 3 Bilateral Series

Entry 3.4.8 (p. 15). For a �= 0,

∞∑
n=1

(−1; q)n(−aq; q)n−1q
n +

1
1 + a

∞∑
n=0

a−nqn2

(−q; q)n(−q/a; q)n

=
(−aq; q)∞
(q2; q2)∞

( ∞∑
n=0

qn(n+1)/2

1 + aqn +
1
a

∞∑
n=1

qn(n+1)/2

1 + qn/a

)
.

Proof. Set b = 1 in Entry 3.4.7. ��

3.5 Identities Arising from the Quintuple Product
Identity

Entry 3.5.1 (p. 48).

(q2; q2)∞
∞∑

n=0

qn2

(q; q)n
=

∞∑
n=−∞

(−1)nq15n2+2n(1 + q6n+1). (3.5.1)

Proof. By the first Rogers–Ramanujan identity (Entry 3.2.2 of Part I [31,
p. 87] or (4.1.1) in this volume), we find that

(q2; q2)∞
∞∑

n=0

qn2

(q; q)n
=

(q2; q2)∞
(q; q5)∞(q4; q5)∞

=
(q2; q2)∞(−q; q5)∞(−q4; q5)∞

(q2; q10)∞(q8; q10)∞
= (q10; q10)∞(−q; q5)∞(−q4; q5)∞(q4; q10)∞(q6; q10)∞
= (q10; q10)∞(−q; q10)∞(−q9; q10)∞(q8; q20)∞(q12; q20)∞

=
∞∑

n=−∞
(−1)nq15n2+2n(1 + q6n+1), (3.5.2)

where in the last equality we used (3.1.2) with q replaced by q10 and z replaced
by q. ��

Entry 3.5.2 (p. 48).

(q2; q2)∞
∞∑

n=0

qn2+n

(q; q)n
=

∞∑
n=−∞

(−1)nq15n2+4n(1 + q10n+3). (3.5.3)

Proof. By the second Rogers–Ramanujan identity (Entry 3.2.2 of Part I [31,
p. 87] or (4.1.2) in this book), we find that
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(q2; q2)∞
∞∑

n=0

qn2+n

(q; q)n
=

(q2; q2)∞
(q2; q5)∞(q3; q5)∞

=
(q2; q2)∞(−q2; q5)∞(−q3; q5)∞

(q4; q10)∞(q6; q10)∞
= (q10; q10)∞(−q2; q5)∞(−q3; q5)∞(q2; q10)∞(q8; q10)∞
= (q10; q10)∞(−q7; q10)∞(−q3; q10)∞(q4; q20)∞(q16; q20)∞

=
∞∑

n=−∞
(−1)nq15n2+4n(1 + q10n+3), (3.5.4)

where in the last equality we used (3.1.2) with q replaced by q10 and z replaced
by q3. ��

Entry 3.5.3 (p. 36). We have

∞∑
n=0

(−1)nq(5n2+7n+2)/2

(−q3; q5)n+1

=
1
2

∞∑
n=0

qn(15n+7)/2(1 − q8n+4)

+
1
2

∞∑
n=0

q(15n2+13n+2)/2(1 − q2n+1) − f(−q2,−q8)
2(−q; q)∞

, (3.5.5)

∞∑
n=0

(−1)nq(5n2+3n)/2

(−q2; q5)n+1

=
1
2

∞∑
n=0

qn(15n+7)/2(1 − q8n+4)

+
1
2

∞∑
n=0

q(15n2+13n+2)/2(1 − q2n+1) +
f(−q2,−q8)
2(−q; q)∞

. (3.5.6)

We have combined these two results into a single entry because it is easiest
to prove them simultaneously.

Proof. We propose to prove the following two formulas, from which the de-
sired results follow by addition and subtraction:

∞∑
n=0

(−1)nq(5n2+3n)/2

(−q2; q5)n+1

+
∞∑

n=0

(−1)nq(5n2+7n+2)/2

(−q3; q5)n+1

(3.5.7)

=
∞∑

n=0

qn(15n+7)/2(1 − q8n+4) +
∞∑

n=0

q(15n2+13n+2)/2(1 − q2n+1),

∞∑
n=0

(−1)nq(5n2+3n)/2

(−q2; q5)n+1

−
∞∑

n=0

(−1)nq(5n2+7n+2)/2

(−q3; q5)n+1

=
f(−q2,−q8)

(−q; q)∞
. (3.5.8)

To prove these last two results, we first apply the Rogers–Fine identity
(1.7.1) with q replaced by q5, α = q6/τ , and β = −q8. Let τ tend to 0 and
multiply both sides by q/(1 + q3). Accordingly,
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∞∑
n=0

(−1)nq(5n2+7n+2)/2

(−q3; q5)n+1

=
q

1 + q3 lim
τ→0

∞∑
n=0

(q6/τ ; q5)n(−q3; q5)n(−1)nq8nτnq5n2−5n(1 − q10n+6)
(−q8; q5)n(τ ; q5)n+1

=
∞∑

n=0

q(15n2+13n+2)/2(1 − q5n+3). (3.5.9)

Also, applying (1.7.1) with q replaced by q5, α = q4/τ , and β = −q7, letting
τ tend to 0, and then multiplying both sides by 1/(1 + q2), we deduce that

∞∑
n=0

(−1)nq(5n2+3n)/2

(−q2; q5)n+1

=
∞∑

n=0

q(15n2+7n)/2(1 − q5n+2). (3.5.10)

Hence, if we add (3.5.9) and (3.5.10), we see that (3.5.7) follows from

∞∑
n=0

q(15n2+7n)/2(1 − q5n+2) +
∞∑

n=0

q(15n2+13n+2)/2(1 − q5n+3)

=
∞∑

n=0

(
q(15n2+7n)/2 − q(15n2+17n+4)/2 + q(15n2+13n+2)/2 − q(15n2+23n+8)/2

)

=
∞∑

n=0

q(15n2+7n)/2(1 − q8n+4) +
∞∑

n=0

q(15n2+13n+2)/2(1 − q2n+1).

To obtain (3.5.8), we see that we must subtract (3.5.9) from (3.5.10). Thus,
we need to determine

∞∑
n=0

q(15n2+7n)/2(1 − q5n+2) −
∞∑

n=0

q(15n2+13n+2)/2(1 − q5n+3)

=
∞∑

n=0

(
q(15n2+7n)/2 − q(15n2+17n+4)/2

−q(15(−n−1)2+17(−n−1)+4)/2 + q(15(−n−1)2+7(−n−1))/2
)

=
∞∑

n=−∞
q(15n2+7n)/2 −

∞∑
n=−∞

q(15n2+17n+4)/2

=
∞∑

n=−∞
q(15n2+7n)/2(1 − q5n+2). (3.5.11)

Applying (3.1.2) with q replaced by q5 and z replaced by −q2, we find that

∞∑
n=−∞

q(15n2+7n)/2(1 − q5n+2) = (q2; q5)∞(q3; q5)∞(q5; q5)∞(q; q10)∞(q9; q10)∞
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= (q2; q10)∞(q8; q10)∞(q10; q10)∞(q; q2)∞

=
f(−q2,−q8)

(−q; q)∞
, (3.5.12)

where we used (1.4.8) in the last equality. This proves (3.5.8). ��

The following three entries are, respectively, formulas (117), (118), and
(119) in Slater’s paper [262], but with q replaced by −q. The three formulas
are also related, respectively, to formulas (80), (81), and (82) in Slater’s paper
[262], which can be found in Rogers’s paper [248, p. 331, equation (1), lines 2,
1, and 3, resp.]. Although results from Chapter 1 are required in our proofs,
in light of the fact that the quintuple product identity plays a central role, we
have placed these entries here.

Entry 3.5.4 (p. 10). Recalling that f(a, b) is defined in (1.4.8), we have

∞∑
n=0

(−1)nqn2

(q4; q4)n(−q; q2)n
=

f(q10, q11) − qf(q4, q17)
(q2; q2)∞

=
(q7; q7)∞f(−q2,−q5)

(q2; q2)∞f(q, q6)
.

(3.5.13)

Proof. We first apply (1.2.1) with h = 2, a = q/t, and c = −q, and then let
b, t → 0. Accordingly,

∞∑
n=0

(−1)nqn2

(q4; q4)n(−q; q2)n
=

∞∑
n=0

(−1)nqn2

(q2; q2)n(−q; q)2n

=
(q; q2)∞
(−q; q)∞

∞∑
n=0

qn(n+1)/2

(q; q)n(q; q2)n

=
1

(−q; q)2∞

∞∑
n=0

(−q; q)nqn(n+1)/2

(q; q)2n
=: S. (3.5.14)

We now apply two representations in equation (81) of [262]. First, the right-
hand side of (3.5.14) is equal to

S =
1

(q2; q2)∞

(
(−q10,−q11, q21; q21)∞ − q(−q4,−q17, q21; q21)∞

)

=
f(q10, q11) − qf(q4, q17)

(q2; q2)∞
,

by the Jacobi triple product identity (1.4.8). Thus, we obtain the first equality
in (3.5.13). The other representation of equation (81) in [262] yields from
(3.5.14)

S =
1

(q2; q2)∞
(q, q6, q7; q7)∞(q5, q9; q14)∞
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=
1

(q2; q2)∞
(q, q6, q7; q7)∞(q2, q5; q7)∞

(q2, q12; q14)∞

=
(q7; q7)∞
(q2; q2)∞

(q2, q5, q7; q7)∞
(−q,−q6, q7; q7)∞

=
(q7; q7)∞f(−q2,−q5)

(q2; q2)∞f(q, q6)
,

upon two applications of the triple product identity (1.4.8). ��

Entry 3.5.5 (p. 10). With f(a, b) defined by (1.4.8),

∞∑
n=0

(−1)nqn2+2n

(q4; q4)n(−q; q2)n
=

f(q8, q13) − q2f(q, q20)
(q2; q2)∞

=
(q7; q7)∞f(−q3,−q4)

(q2; q2)∞f(q2, q5)
.

(3.5.15)

Proof. We apply (1.2.1) with h = 2, a = q3/t, and c = −q. We then let b and
t tend to 0 to find that

∞∑
n=0

(−1)nqn2+2n

(q4; q4)n(−q; q2)n
=

∞∑
n=0

(−1)nqn2+2n

(q2; q2)n(−q; q)2n

=
(q3; q2)∞
(−q; q)∞

∞∑
n=0

qn(n+1)/2

(q; q)n(q3; q2)n

=
1

(−q; q)2∞

∞∑
n=0

(−q; q)nqn(n+1)/2

(q; q)2n+1
=: S. (3.5.16)

We now apply the two representations for S on the far right side of (3.5.16)
given in equation (80) of Slater’s paper [262]. First,

S =
1

(q2; q2)∞

(
(−q8,−q13, q21; q21)∞ − q2(−q,−q20, q21; q21)∞

)

=
f(q8, q13) − q2f(q, q20)

(q2; q2)∞
,

by the triple product identity (1.4.8). This then proves the first equality in
(3.5.15). Applying the second representation for S given in equation (80) of
Slater’s paper [262], we find that

S =
1

(q2; q2)∞
(q2, q5, q7; q7)∞(q3, q11; q14)∞

=
1

(q2; q2)∞
(q2, q5, q7; q7)∞(q3, q4; q7)∞

(q4, q10; q14)∞

=
(q7; q7)∞
(q2; q2)∞

(q3, q4, q7; q7)∞
(−q2,−q5, q7; q7)∞
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=
(q7; q7)∞f(−q3,−q4)

(q2; q2)∞f(q2, q5)
,

upon two applications of (1.4.8). This then completes the proof of the second
equality of (3.5.15). ��

Entry 3.5.6 (p. 10). If f(a, b) is defined by (1.4.8), then

∞∑
n=0

(−1)nqn2+2n

(q4; q4)n(−q; q2)n+1
=

f(q5, q16) − qf(q2, q19)
(q2; q2)∞

=
(q7; q7)∞f(−q,−q6)
(q2; q2)∞f(q3, q4)

.

(3.5.17)

Proof. Apply (1.2.1) with h = 2, a = q3/t, and c = −q2. Then let b and t
tend to 0 and multiply both sides by 1/(1 + q) to deduce that

∞∑
n=0

(−1)nqn2+2n

(q4; q4)n(−q; q2)n+1
=

1
1 + q

∞∑
n=0

(−1)nqn2+2n

(q2; q2)n(−q2; q)2n

=
(q3; q2)∞
(−q; q)∞

∞∑
n=0

qn(n+3)/2

(q; q)n(q3; q2)n

=
1

(−q; q)2∞

∞∑
n=0

(−q; q)nqn(n+3)/2

(q; q)2n+1
=: S.

We now apply one of the equalities in equation (82) of Slater’s paper [262] to
S above and also apply the Jacobi triple product identity (1.4.8) to deduce
that

S =
1

(q2; q2)∞

(
(−q5,−q16, q21; q21)∞ − q(−q2,−q19, q21; q21)∞

)

=
f(q5, q16) − qf(q2, q19)

(q2; q2)∞
,

which yields the first equality in (3.5.17). We now invoke the second repre-
sentation for S given in equation (82) in Slater’s paper [262] to find that

S =
1

(q2; q2)∞
(q3, q4, q7; q7)∞(q, q13; q14)∞

=
1

(q2; q2)∞
(q3, q4, q7; q7)∞(q, q6; q7)∞

(q6, q8; q14)∞

=
(q7; q7)∞
(q2; q2)∞

(q, q6, q7; q7)∞
(−q3,−q4, q7; q7)∞

=
(q7; q7)∞f(−q,−q6)
(q2; q2)∞f(q3, q4)

,

upon two applications of the triple product identity (1.4.8). Thus, the second
identity in (3.5.17) has been established. ��
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Entry 3.6.1 (p. 24).

(−q;−q)∞
∞∑

n=0

qn(n+1)/2

(q2; q2)n

=
∞∑

n=0

q2n2+n

(−q2; q2)n

+
∞∑

n=1

(−1; q2)nqn2
. (3.6.1)

Proof. In light of the fact that, by (3.1.1),

q2(−n)2+(−n)

(−q2; q2)−n

= (−1; q2)nqn2
,

we see that, with an application of (1.2.4),

S : =
∞∑

n=0

q2n2+n

(−q2; q2)n

+
∞∑

n=1

(−1; q2)nqn2
=

∞∑
n=−∞

q2n2+n

(−q2; q2)n

=
1

(−q2; q2)∞

∞∑
n=−∞

q2n2+n(−q2n+2; q2)∞

=
1

(−q2; q2)∞

∞∑
n=−∞

q2n2+n
∞∑

m=0

qm2+m+2nm

(q2; q2)m

=
1

(−q2; q2)∞

∞∑
n=−∞

q2n2+n

( ∞∑
m=0

q4m2+2m+4nm

(q2; q2)2m

+
∞∑

m=0

q4m2+6m+2+4nm+2n

(q2; q2)2m+1

)
.

Invert the order of summation. Then replace n by n − m in the former sum
and by −n − 1 − m in the latter sum. Hence,

S =
1

(−q2; q2)∞

( ∞∑
m=0

q2m2+m

(q2; q2)2m

∞∑
n=−∞

q2n2+n

+
∞∑

m=0

q2m2+3m+1

(q2; q2)2m+1

∞∑
n=−∞

q2n2+n

)

=
1

(−q2; q2)∞

∞∑
n=−∞

q2n2+n

( ∞∑
m=0

q2m(2m+1)/2

(q2; q2)2m

+
∞∑

m=0

q(2m+1)(2m+2)/2

(q2; q2)2m+1

)
.

Now we apply (1.4.8) to deduce that

S =
(−q; q4)∞(−q3; q4)∞(q4; q4)∞

(−q2; q2)∞

∞∑
m=0

qm(m+1)/2

(q2; q2)m
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= (−q; q2)∞(q2; q2)∞
∞∑

m=0

qm(m+1)/2

(q2; q2)m

= (−q;−q)∞
∞∑

m=0

qm(m+1)/2

(q2; q2)m

,

as desired. ��
Entry 3.6.2 (p. 24).

(q4; q4)∞
∞∑

n=0

qn(n+1)/2

(q2; q2)n

=
∞∑

n=0

(−q; q2)nqn2+n +
∞∑

n=1

q2n2−n

(−q; q2)n

. (3.6.2)

Proof. First observe that, by (3.1.1),

q2(−n)2−(−n)

(−q; q2)−n

= (−q; q2)nqn2+n.

We now proceed with the same steps that we used in the proof of Entry 3.6.1.
We first use the equality above to write the right-hand side of (3.6.2) as a
bilateral series. We next apply (1.2.4). Then invert the order of summation
and replace n by n − m in the former sum and by −n − m in the latter sum.
We again invert the order of summation and apply the Jacobi triple product
identity (1.4.8). Accordingly, we find that

∞∑
n=0

qn2+n(−q; q2)n +
∞∑

n=1

q2n2−n

(−q; q2)n

=
∞∑

n=−∞

q2n2−n

(−q; q2)n

=
1

(−q; q2)∞

∞∑
n=−∞

q2n2−n(−q2n+1; q2)∞

=
1

(−q; q2)∞

∞∑
n=−∞

q2n2−n
∞∑

m=0

qm2+2nm

(q2; q2)m

=
1

(−q; q2)∞

∞∑
n=−∞

q2n2−n

( ∞∑
m=0

q4m2+4nm

(q2; q2)2m

+
∞∑

m=0

q4m2+4m+1+4nm+2n

(q2; q2)2m+1

)

=
1

(−q; q2)∞

( ∞∑
m=0

q2m2+m

(q2; q2)2m

∞∑
n=−∞

q2n2−n

+
∞∑

m=0

q2m2+3m+1

(q2; q2)2m+1

∞∑
n=−∞

q2n2−n

)

=
1

(−q; q2)∞

∞∑
n=−∞

q2n2−n

( ∞∑
m=0

q2m(2m+1)/2

(q2; q2)2m

+
∞∑

m=0

q(2m+1)(2m+2)/2

(q2; q2)2m+1

)

=
(−q; q4)∞(−q3; q4)∞(q4; q4)∞

(−q; q2)∞

∞∑
m=0

qm(m+1)/2

(q2; q2)m
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= (q4; q4)∞
∞∑

m=0

qm(m+1)/2

(q2; q2)m

,

as desired. ��

We note that Entries 3.6.1 and 3.6.2 were first proved in [23].

Entry 3.6.3 (p. 27). For a �= 0,

∞∑
n=−∞

anqn2/4
∞∑

m=0

(−1)mambmqm2/4

(q)m
= (bq)∞

×
(

a−1q1/4
∞∑

n=0

a−2nqn2+n

(bq)n
+ a−1q1/4

∞∑
n=1

(−1)na2nbnqn(n−1)/2(1/b)n

)

+ (bq1/2)∞

( ∞∑
n=1

a−2nqn2

(bq1/2)n

+
∞∑

n=0

(−1)na2nbnqn2/2(q1/2/b)n

)
. (3.6.3)

Proof. In light of the facts that, by (3.1.1),

a−2(−n)q(−n)2+(−n)

(bq)−n
= (−1)n(1/b)na2nbnqn(n−1)/2

and
a−2(−n)q(−n)2

(bq1/2)−n

= (−1)n(q1/2/b)na2nbnqn2/2,

we see that we may rewrite the right-hand side of (3.6.3) as

(bq)∞
∞∑

n=−∞

a−(2n+1)q(2n+1)2/4

(bq)n
+ (bq1/2)∞

∞∑
n=−∞

a−2nq(2n)2/4

(bq1/2)n

=
∞∑

n=−∞
a−nqn2/4(bq(n+1)/2)∞ =: S.

Applying (1.2.4), we find that

S =
∞∑

n=−∞
a−nqn2/4

∞∑
m=0

(−1)mbmq(m2+mn)/2

(q)m

=
∞∑

m=0

(−1)mambmqm2/4

(q)m

∞∑
n=−∞

a−(n+m)q(n+m)2/4

=
∞∑

n=−∞
anqn2/4

∞∑
m=0

(−1)mambmqm2/4

(q)m
,

which is the left-hand side of (3.6.3). Hence the proof of Entry 3.6.3 is com-
plete. ��
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Entry 3.6.4 (p. 4). Recall that ϕ(q) and ψ(q) are defined by (1.4.9) and
(1.4.10), respectively. Then

ϕ(q)

(
2

∞∑
n=−∞

qn2+n

1 + q2n

)
− 8ψ(q2)

( ∞∑
n=1

qn2

1 + q2n−1

)
= ϕ3(−q). (3.6.4)

Proof. On the right-hand side below, we replace m+n by m in the first inner
sum, and by −m in the second. Therefore,

S :=
∞∑

n=−∞

(−1)nqn2/4+n/2

1 + qn

∞∑
m=−∞

qm2+mn+n2/4

=
∞∑

n=−∞

qn2+n

1 + q2n

∞∑
m=−∞

q(m+n)2 −
∞∑

n=−∞

qn2

1 + q2n−1

∞∑
m=−∞

q(n+m)2−(m+n)

= ϕ(q)
∞∑

n=−∞

qn2+n

1 + q2n − 4ψ(q2)
∞∑

n=1

qn2

1 + q2n−1 ,

where we have noted that, in the penultimate latter sum on n, the sum over
−∞ < n ≤ 0 is equal to that over 1 ≤ n < ∞. Thus, the left-hand side of
(3.6.4) is equal to 2S, and it remains to show that

2S = ϕ3(−q). (3.6.5)

Now, also

2S = 2
∞∑

n=−∞

(−1)nqn2/4+n/2

1 + qn

∞∑
m=−∞

qm2+mn+n2/4

= 2
∞∑

m=−∞
(−1)mqm(m−1)/2

∞∑
n=−∞

(−1)n+mq(n+m)(n+m+1)/2+m

qm + qn+m

= 2
∞∑

m=−∞
(−1)mqm(m−1)/2

∞∑
n=−∞

(−1)nqn(n+1)/2+m

qm + qn . (3.6.6)

By Entry 12.2.2 of Part I [31, p. 264] with c = −q−m, we see that

∞∑
n=−∞

(−1)nqn(n+1)/2+m

qm + qn =
(q)2∞

(−q−m)∞(−qm+1)∞

=
(q)2∞

2(−q)2∞
qm(m+1)/2. (3.6.7)

Putting (3.6.7) into (3.6.6) and using (1.4.9), we conclude that
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2S = 2
∞∑

m=−∞
(−1)mqm(m−1)/2

∞∑
n=−∞

(−1)nqn(n+1)/2+m

qm + qn

=
(q)2∞

(−q)2∞

∞∑
m=−∞

(−1)mqm2

= ϕ3(−q).

Hence, we have shown (3.6.5), and so the proof is complete. ��

After stating Entry 3.6.4, Ramanujan remarks, “Generalisations simple
and similar.” If we carefully examine the previous proof, we see that the same
method of proof yields the following theorem, which we state as an entry,
because it most likely is what Ramanujan had in mind.

Entry 3.6.5 (p. 4). If k is any positive integer, then

2k−1∑
j=0

(−1)j

( ∞∑
m=−∞

qkm2+jm

) ∞∑
n=−∞

q(2kn+j+1)(2kn+j)/2−kn2−jn

1 + q2kn+j

= ϕ2(−q)ϕ(−qk). (3.6.8)

The identity (3.6.8) reduces to Entry 3.6.4 when k = 1.
We close this chapter with an entry that has close ties to the results in

Chapter 12 of [31]. However, a nontrivial application of (3.2.2) suggests that
we place it here.

Entry 3.6.6 (p. 29). Recall that ϕ(q) and ψ(q) are defined in (1.4.9) and
(1.4.10), respectively. Then

∞∑
n=0

(−q; q2)nqn2

(−q4; q4)n
=

1
2

∞∑
n=0

(−1)n(q; q2)nqn2

(−q2; q2)2n
+

1
2

ϕ2(q)
ψ(q)

. (3.6.9)

Proof. We replace q by −q and a by i in Entry 12.3.4 of [31, p. 267] to deduce
that

∞∑
n=0

(−q; q2)nqn2

(−q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

∞∑
n=−∞

(−q)n(n+1)/2

1 + q2n
+

(−q; q2)∞ϕ(q)
2(−q2; q2)∞

.

(3.6.10)
By the product representations given in (1.4.9) and (1.4.10) and Euler’s iden-
tity,

(−q; q2)∞ϕ(q)
(−q2; q2)∞

=
(−q; q2)∞ϕ2(q)

(−q2; q2)∞(−q; q2)2∞(q2; q2)∞

=
(q; q2)∞ϕ2(q)

(q2; q2)∞

=
ϕ2(q)
ψ(q)

. (3.6.11)
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Using (3.6.11) in (3.6.10) and comparing the result with (3.6.9), we see that
in order to complete our proof we must show that

1
2

∞∑
n=0

(−1)n(q; q2)nqn2

(−q2; q2)2n
=

(−q; q2)∞
(q2; q2)∞

∞∑
n=−∞

(−q)n(n+1)/2

1 + q2n
. (3.6.12)

Now by Entry 12.2.1 of [31, p. 264] with c = 1,

(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q2n2+n

1 + q2n
=

1
2

∞∑
n=0

(−1)n(q; q2)nqn2

(−q2; q2)2n
. (3.6.13)

Comparing (3.6.13) with (3.6.12), we see that it now suffices to show that

(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q2n2+n

1 + q2n
=

(−q; q2)∞
(q2; q2)∞

∞∑
n=−∞

(−q)n(n+1)/2

1 + q2n
. (3.6.14)

Replacing q by −q in (3.6.14), we now see that we must show that

(−q; q2)∞
∞∑

n=−∞

(−1)nq2n2+n

1 + q2n
= (q; q2)∞

∞∑
n=−∞

qn(n+1)/2

1 + q2n

= (q; q2)∞Re
∞∑

n=−∞

qn(n+1)/2

1 + iqn
, (3.6.15)

where it is assumed that q is real.
We now consider (3.2.2) with α = −q/τ , β = −i, z = γ = τ , and δ = −iq.

Letting τ → 0, we find that

(1 + i)
∞∑

n=−∞

qn(n+1)/2

1 + iqn
= 2

(−q; q)2∞
(−q2; q2)∞

∞∑
n=−∞

inqn(n+1)/2

1 + qn
.

Thus,

Re
∞∑

n=−∞

qn(n+1)/2

1 + iqn
=

(−q; q2)∞
(q; q2)∞

Re

(
(1 − i)

∞∑
n=−∞

inqn(n+1)/2

1 + qn

)

=
(−q; q2)∞
(q; q2)∞

( ∞∑
n=−∞

(−1)nqn(2n+1)

1 + q2n
+

∞∑
n=−∞

(−1)nq(2n+1)(n+1)

1 + q2n+1

)

=
(−q; q2)∞
(q; q2)∞

∞∑
n=−∞

(−1)nqn(2n+1)

1 + q2n
,

since the second sum in the penultimate line vanishes, because replacing the
index n by −n − 1 reveals that it is equal to its negative. Hence, we see that
we have proved (3.6.15), which therefore completes the proof. ��



4

Well-Poised Series

4.1 Introduction

Among Ramanujan’s most far-reaching and striking discoveries are the Rogers–
Ramanujan identities, given for |q| < 1 by [241], [31, Chapter 10]

∞∑
n=0

qn2

(q; q)n
=

1
(q; q5)∞(q4; q5)∞

(4.1.1)

and
∞∑

n=0

qn2+n

(q; q)n
=

1
(q2; q5)∞(q3; q5)∞

. (4.1.2)

In the lost notebook, we find many identities of the Rogers–Ramanujan type;
see, for example, Chapter 11 of our first book [31]. The vast majority of them
can be proved as special limiting cases of Watson’s q-analogue of Whipple’s
theorem [274], [151, p. 242, equation (III.18)]. If α, β, γ, δ, and ε are any
complex numbers such that βγδε �= 0, and if N is any nonnegative integer,
then

8φ7

(
α, q

√
α, −q

√
α, β, γ, δ, ε, q−N

√
α, −√

α,
αq

β
,

αq

γ
,

αq

δ
,

αq

ε
, αqN+1 ; q,

α2qN+2

βγδε

)

=
(αq)N

(αq

δε

)
N(αq

δ

)
N

(αq

ε

)
N

4φ3

⎛
⎜⎝

αq

βγ
, δ, ε, q−N

αq

β
,
αq

γ
,
δεq−N

α

; q, q

⎞
⎟⎠ . (4.1.3)

Although we cannot find a statement of this theorem in Ramanujan’s works,
he recorded many deductions from it. In particular, see [54, p. 16, Entry 7]
and the pages immediately following.

The series 8φ7 in (4.1.3) is called very well-poised. The term “well poised”
refers to the fact that the product of each column of entries is the same, in
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this case αq. In the first column, α is to be paired with q, arising from (q; q)n,
which is in the denominator of 8φ7 but which does not appear in the notation
8φ7. The adverb “very” refers to the fact that the second and third columns
are

q
√

α, −q
√

α√
α, −√

α.

Two lesser known, but highly useful, identities of this nature were proved
by W.N. Bailey. They are [41, equation (6.3)]

∞∑
n=0

(ρ1; q)n(ρ2; q)n(aq/f ; q2)n

(q; q)n(aq; q2)n(aq/f ; q)n

(
aq

ρ1ρ2

)n

=
(aq/ρ1; q)∞(aq/ρ2; q)∞
(aq; q)∞(aq/(ρ1ρ2); q)∞

(
1

+
∞∑

n=1

(aq2; q2)n−1(f ; q2)n(ρ1; q)2n(ρ2; q)2n(1 − aq4n)
(q2; q2)n(aq2/f ; q2)n(aq/ρ1; q)2n(aq/ρ2; q)2n

(
a3

ρ2
1ρ

2
2f

)n

q2n2+2n

)

(4.1.4)

and [41, equation (6.1)]

∞∑
n=0

(ρ1; q2)n(ρ2; q2)n(−aq/b; q)2n

(q2; q2)n(a2q2/b2; q2)n(−aq; q)2n

(
a2q2

ρ1ρ2

)n

=
(a2q2/ρ1; q2)∞(a2q2/ρ2; q2)∞
(a2q2; q2)∞(a2q2/(ρ1ρ2); q2)∞

(4.1.5)

×
(

1 +
∞∑

n=1

(aq; q)n−1(b; q)n(ρ1; q2)n(ρ2; q2)n(1 − aq2n)
(q; q)n(aq/b; q)n(a2q2/ρ1; q2)n(a2q2/ρ2; q2)n

(
a3q2

ρ1ρ2b

)n

qn2

)
.

We conclude this introduction by stating two limiting formulas that we
use many times in the sequel, usually without comment:

lim
N→∞

(q−N )n

(αq−N )n
=

1
αn

,

lim
N→∞

(q−N )nqNn

(αqN+1)n
= (−1)nqn(n−1)/2.

4.2 Applications of (4.1.3)

Ramanujan recorded many formulas that are direct corollaries of (4.1.3). We
begin this section with the formulas that he published in [241]. Entry 4.2.3
is the most general special case of (4.1.3) that appears in the lost notebook.
Indeed, many of the subsequent entries are instances of Entry 4.2.3. We have,
however, chosen for coherence and consistency to deduce each of the 14 entries
in this section directly from (4.1.3).
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Entry 4.2.1 (p. 41). For any complex number a,

(aq)∞
∞∑

n=0

anqn2

(q)n
=

∞∑
n=0

(−1)n(a)n(1 − aq2n)
(q)n(1 − a)

a2nqn(5n−1)/2

=
∞∑

n=0

(−1)n(aq)n(1 − a2q4n+2)
(q)n

a2nqn(5n+1)/2. (4.2.1)

These are the identities from which Ramanujan deduced (4.1.1) and (4.1.2)
in his joint paper with L.J. Rogers [241].

Proof. The first line of this entry follows directly from (4.1.3) by letting α = a
and letting β, γ, δ, ε, and N tend to ∞. This is precisely the argument used
by G.N. Watson [274].

We now divide both identities in (4.2.1) by (aq)∞, and so we need to prove
that R1(a, q) = R2(a, q), where

R1(a, q) :=
∞∑

n=0

(−1)n(1 − aq2n)
(q)n(aqn)∞

a2nqn(5n−1)/2

and

R2(a, q) :=
∞∑

n=0

(−1)n(1 − a2q4n+2)
(q)n(aqn+1)∞

a2nqn(5n+1)/2.

We follow Ramanujan’s lead from [241]. Thus,

R1(a, q) =
∞∑

n=0

(−1)na2nqn(5n−1)/2{(1 − qn) + qn(1 − aqn)}
(q)n(aqn)∞

=
∞∑

n=1

(−1)na2nqn(5n−1)/2

(q)n−1(aqn)∞
+

∞∑
n=0

(−1)na2nqn(5n+1)/2

(q)n(aqn+1)∞

=
∞∑

n=0

(−1)n+1a2n+2qn(5n+1)/2+4n+2

(q)n(aqn+1)∞
+

∞∑
n=0

(−1)na2nqn(5n+1)/2

(q)n(aqn+1)∞

=
∞∑

n=0

(−1)na2nqn(5n+1)/2(1 − a2q4n+2)
(q)n(aqn+1)∞

= R2(a, q),

which is what we wanted to show. ��

Entry 4.2.2 (p. 41). For any complex number a,

(aq)∞
∞∑

n=0

anqn2+n

(q)n
=

∞∑
n=0

(−1)n(aq)n(1 − aq2n+1)
(q)n

a2nqn(5n+3)/2.
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Proof. Replace a by aq in the first line of (4.2.1) and then multiply both
sides by (1 − aq). ��

Entry 4.2.3 (p. 42). For arbitrary complex numbers a, b, and c,

(aq)∞
(−bq)∞

∞∑
n=0

(−aq/b)nbnqn(n+1)/2

(q)n(−cq)n

=
∞∑

n=0

(−1)n(aq)n(−aq/b)n(−aq/c)n(1 − aq2n+1)bncnqn(3n+1)/2

(q)n(−bq)n(−cq)n
.

Proof. In (4.1.3), set α = aq, γ = −aq/c, and δ = −aq/b. Then let β, ε, and
N tend to ∞. After multiplying both sides by (1 − aq), the result simplifies
to the desired identity. ��

Entry 4.2.4 (p. 28). If a and b are arbitrary, then

(−aq)∞
(−bq)∞

∞∑
n=0

(aq/b)nbnqn(n+1)/2

(q)n

=
∞∑

n=0

(aq/b)n(−aq)n(1 + aq2n+1)anbnq2n2+n

(q)n(−bq)n
.

Proof. In (4.1.3), let α = −aq and δ = aq/b, and then let β, γ, ε, and N
→ ∞. Multiply both sides of the resulting equality by (1 + aq) and simplify
to complete the proof. ��

It may be noted that the result above also follows from Entry 4.2.3 by
replacing a by −a and setting c = 0.

Entry 4.2.5 (p. 28). For any complex numbers a and λ,

(λq)∞
∞∑

n=0

λnqn2

(q)n(aq)n
= 1 +

∞∑
n=0

(λ/a)n(λq)n−1(1 − λq2n)λnanq2n2

(q)n(aq)n
.

Proof. In (4.1.3), replace α by λ, then set β = λ/a, and finally let γ, δ, ε, and
N tend to ∞. Upon algebraic simplification, the desired result follows. ��

The following entry was recorded (with one misprint) by I. Pak [226, Equa-
tion (4.4.2)] in his survey paper. See also Entry 1.7.10.

Entry 4.2.6 (p. 41). Recall that ψ(q) is defined by (1.4.10). Then

1
ψ(q)

=
∞∑

n=0

(−1)n(q; q2)nqn2

(q2; q2)2n
.
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Proof. In (4.1.3), replace q by q2, then set δ = q, next let β, ε, and N tend
to ∞, and lastly let α and γ tend to 1. After simplification, we arrive at

1 =
(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)2n
. (4.2.2)

Multiplying both sides by (q; q2)∞/(q2; q2)∞ and invoking the product repre-
sentation from (1.4.10), we complete the proof. ��

We might note that in fact, one may deduce this result from (1.2.9),
wherein one replaces q by q2, then sets a = q, b = q/t, and c = q2, and
finally lets t → 0.

Entry 4.2.7 (p. 41). If ϕ(q) and ψ(q) are defined by (1.4.9) and (1.4.10),
respectively, then

ϕ(q3)
ψ(q)

=
∞∑

n=0

(−1)n(q; q2)nqn2

(q4; q4)n
.

This identity is given by L.J. Slater [262] as equation (25) with q replaced
by −q.

Proof. In (4.1.3), replace q by q2, let α → 1, then set β = −1 and δ = q, and
let γ, ε, and N tend to ∞. The result after simplification is

1 + 2
∞∑

n=1

q3n2
=

(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)n(−q2; q2)n
,

and this reduces to the desired result upon invoking (1.4.9) and (1.4.10). ��
The next entry is a corrected version of one of Slater’s identities [262,

equation (6)].

Entry 4.2.8 (p. 34). We have

ϕ(−q3)
ϕ(−q)

=
∞∑

n=0

(−1; q)nqn2

(q; q)n(q; q2)n
.

Proof. In (4.1.3), set β =
√

q and γ = −√
q, let δ, ε, and N → ∞, and let

α → 1. Hence, using the definition of f(a, b) and the Jacobi triple product
identity in (1.4.8), we find that

∞∑
n=0

(−1; q)nqn2

(q; q)n(q; q2)n
=

1
(q; q)∞

∞∑
n=0

(1 + qn)qn(3n−1)/2

=
f(q, q2)
(q; q)∞

=
(−q; q3)∞(−q2; q3)∞(q3; q3)∞

(q; q)∞

=
(q3; q3)∞

(−q3; q3)∞
(−q; q)∞
(q; q)∞

=
ϕ(−q3)
ϕ(−q)

,
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by (1.4.9). ��

Entry 4.2.9 (p. 34). We have

ϕ(−q3)
ϕ(−q)

=
∞∑

n=0

(−q; q)nqn2

(q; q)n(q; q2)n+1
.

Proof. For each integer r ≥ 0, we define

fr(q) :=
∞∑

n=0

(−1; q)nq(n+r)2

(q; q)n(q; q2)n+r
−

∞∑
n=0

(−q; q)nq(n+r)2

(q; q)n(q; q2)n+r+1
. (4.2.3)

Hence,

fr(q) =
∞∑

n=0

(−q; q)n−1q
(n+r)2

(q; q)n(q; q2)n+r+1

(
2(1 − q2n+2r+1) − (1 + qn)

)

=
∞∑

n=1

(−q; q)n−1q
(n+r)2

(q; q)n(q; q2)n+r+1

(
(1 − qn) − 2q2n+2r+1

)

=
∞∑

n=0

(−q; q)nq(n+r+1)2

(q; q)n(q; q2)n+r+2
−

∞∑
n=0

(−1; q)nq(n+r+1)2

(q; q)n(q; q2)n+r+1

= −fr+1(q).

But clearly limr→∞ fr(q) = 0. Therefore, the recurrence formula above implies
that f0(q) = 0. Hence, by (4.2.3) with r = 0 and Entry 4.2.8,

∞∑
n=0

(−q; q)nqn2

(q; q)n(q; q2)n+1
=

∞∑
n=0

(−1; q)nqn2

(q; q)n(q; q2)n
− f0(q) =

ϕ(−q3)
ϕ(−q)

.

��

The following entry is due to Slater [262, equation (48)].

Entry 4.2.10 (p. 34). We have

ϕ(q3)
ϕ(−q2)

=
∞∑

n=0

(−1; q2)nqn(n+1)

(q; q)2n
.

Proof. In (4.1.3), replace q by q2, then set β = q and δ = −1, let γ, ε, and
N → ∞, and lastly let α → 1. After simplification, we find that

∞∑
n=0

(−1; q2)nqn(n+1)

(q; q)2n
=

(−q2; q2)∞
(q2; q2)∞

(
1 + 2

∞∑
n=1

q3n2

)
=

ϕ(q3)
ϕ(−q2)

,

by (1.4.9). ��
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Entry 4.2.11 was rediscovered by D. Stanton [269].

Entry 4.2.11 (p. 41). If f(a, b) is defined by (1.4.8) and ψ(q) is defined by
(1.4.10), then

f(q, q5)
ψ(q)

=
∞∑

n=0

(−1)n(q; q2)nqn(n+2)

(q4; q4)n
.

Proof. In (4.1.3), replace q by q2, then set α = q2, β = −q2, and δ = q, and
lastly let γ, ε, and N approach ∞. After multiplying both sides by 1 + q =
(1 − q2)/(1 − q) and simplifying, we find that

∞∑
n=0

(1 + q2n+1)q3n2+2n =
(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−1)n(q; q2)nqn(n+2)

(q2; q2)n(−q2; q2)n
,

and this reduces to the desired result by invoking (1.4.10) and noting that

q3(−n−1)2+2(−n−1) = q3n2+4n+1.

��

Entry 4.2.12 can be found in Slater’s compendium [262, equation (22)] as
well as Bailey’s book [44, p. 72, equation (10)].

Entry 4.2.12 (p. 34). We have

f(−q,−q5)
ϕ(−q)

=
∞∑

n=0

(−q; q)nqn2+n

(q; q)n(q; q2)n+1
.

Proof. In (4.1.3), set α = q, β =
√

q, and γ = −√
q, and then let δ, ε, and

N tend to ∞. After multiplying both sides by 1/(1 − q), simplifying, and
eventually using (1.4.10), (1.4.8), and (1.4.9) in turn, we deduce that

∞∑
n=0

(−q; q)nqn2+n

(q; q)n(q; q2)n+1
=

1
(q; q)∞

∞∑
n=0

q3n(n+1)/2

=
(q6; q6)∞

(q; q)∞(q3; q6)∞

=
(−q; q)∞
(q; q)∞

(q6; q6)∞
(−q; q)∞(q3; q6)∞

=
(−q; q)∞
(q; q)∞

(q6; q6)∞(q; q2)∞
(q3; q6)∞

=
(−q; q)∞
(q; q)∞

(q; q6)∞(q5; q6)∞(q6; q6)∞

=
f(−q,−q5)

ϕ(−q)
.

��
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One can find the next entry in Slater’s paper [262, equation (28)].

Entry 4.2.13 (p. 35). We have

f(q, q5)
ϕ(−q2)

=
∞∑

n=0

(−q2; q2)nqn(n+1)

(q; q)2n+1
.

Proof. In (4.1.3), we replace q by q2, then we set α = q2, β = q, and δ = −q2,
and let γ, ε, and N tend to ∞. Multiplying both sides by (1 − q2)/(1 − q) =
(1 + q) and simplifying, we find that

∞∑
n=0

(−q2; q2)nqn(n+1)

(q; q)2n+1
=

(−q2; q2)∞
(q2; q2)∞

∞∑
n=0

q3n2+2n(1 + q2n+1) =
f(q, q5)
ϕ(−q2)

,

where we used the same calculation that we used in the proof of Entry 4.2.11,
as well as (1.4.9). ��

Entry 4.2.14 (p. 41). We have

1
ψ(q)

∞∑
n=0

(−1)nq3n2+2n(1 + q2n+1) =
∞∑

n=0

(−1)n(q; q2)nqn(n+2)

(q2; q2)2n
.

Proof. In (4.1.3), replace q by q2, then set α = γ = q2 and δ = q, and finally
let β, ε, and N → ∞. After multiplying both sides by (1+q) = (1−q2)/(1−q)
and simplifying, we find that

∞∑
n=0

(−1)nq3n2+2n(1 + q2n+1) =
(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−1)n(q; q2)nqn(n+2)

(q2; q2)2n
,

and the desired result follows from invoking (1.4.10). ��

If we replace q by −q in the next entry, we obtain the analytic version of
the first Göllnitz–Gordon identity [157], [159]. Observe that Entry 4.2.15 is
identical to Entry 1.7.11, for which we gave a different proof.

Entry 4.2.15 (p. 41). We have

ψ(q4)
f(q, q7)

=
∞∑

n=0

(−1)n(q; q2)nqn2

(q2; q2)n
.

Proof. In (4.1.3), replace q by q2, then let α → 1, set δ = q, and let β, γ, ε,
and N tend to ∞. After simplification, we find that

∞∑
n=0

q4n2−n(1 + q2n) =
(q2; q2)∞
(q; q2)∞

∞∑
n=0

(−1)n(q; q2)nqn2

(q2; q2)n
.
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Next we use the Jacobi triple product identity (1.4.8) to observe that

(q; q2)∞
(q2; q2)∞

∞∑
n=0

q4n2−n(1 + q2n) =
(q; q2)∞
(q2; q2)∞

f(q3, q5)

=
(q; q2)∞
(q2; q2)∞

(−q3; q8)∞(−q5; q8)∞(q8; q8)∞

=
(q; q2)∞
(q2; q2)∞

(−q; q2)∞(q8; q8)∞
(−q; q8)∞(−q7; q8)∞

=
(q8; q8)∞
(q4; q8)∞

(q2; q4)∞
(−q4; q4)∞(q2; q2)∞(−q; q8)∞(−q7; q8)∞

=
(q8; q8)∞
(q4; q8)∞

1
(−q; q8)∞(−q7; q8)∞(q8; q8)∞

=
ψ(q4)

f(q, q7)
,

by (1.4.10) and (1.4.8). ��

Entry 4.2.16 (p. 202). Let a and b be any complex numbers. Then

(abq)∞
∞∑

n=0

anbnqn2

(−aq)n(−bq)n

= (1 + a)(1 + b)
∞∑

n=0

(−1)n(abq)n−1(1 − abq2n)anbnqn(3n+1)/2

(q)n(1 + aqn)(1 + bqn)
.

Proof. In (4.1.3), set α = ab, β = −a, and γ = −b. Then let δ, ε, and N tend
to ∞. The desired result then follows upon simplification. ��

4.3 Applications of Bailey’s Formulas

Entry 4.3.1 (p. 26). Let a and b be any complex numbers. Then

∞∑
n=0

(−aq/b; q)nbnqn(n+1)/2

(q; q)n(aq2; q2)n

=
(−bq; q)∞
(aq; q)∞

∞∑
n=0

(−1)n(aq; q2)n(−aq/b; q)2n(1 − aq4n+1)anb2nq5n2+n

(q2; q2)n(−bq; q)2n
.

Proof. In (4.1.4), replace a by aq, set ρ2 = −aq/b, and let f and ρ1 tend to
∞. ��
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Entry 4.3.2 (p. 41). If a is any complex number, then

∞∑
n=0

anqn(n+1)/2

(−aq2; q2)n
=

∞∑
n=0

(q; q2)n(1 + aq4n+1)a3nq5n2+n

(−aq2; q2)n
.

Proof. Replace a by −a in Entry 4.3.1 and then set b = a. ��

Entry 4.3.3 (p. 28). For arbitrary complex numbers a and b,

∞∑
n=0

(−bq; q2)nanqn(n+1)/2

(−aq2; q2)n(−bq; q)n

=
∞∑

n=0

(−1)n(aq/b; q2)n(q; q2)n(1 + aq4n+1)a2nbnq4n2+n

(−aq2; q2)n(−bq2; q2)n
.

Proof. In (4.1.4), replace a by −aq, then set ρ2 = q and f = aq/b, and lastly
let ρ1 → ∞. ��

Entry 4.3.4 (p. 3). For |aq| < 1,

∞∑
n=0

(q; q2)n(aq; q2)nanqn

(−aq; q)2n+1
=

∞∑
n=0

(−1)nanqn(n+1).

Proof. In (4.1.5), set ρ1 = a, ρ2 = q2, and b = −a. After simplification, we
arrive at

∞∑
n=0

(a; q2)n(q; q2)nan

(−aq; q)2n
= (1 + a)

(
1 +

∞∑
n=1

(−1)nanqn2

)
,

and this becomes the desired result if we replace a by aq and then divide both
sides by (1 + aq). ��

Entry 4.3.5 (p. 28). If a and b are arbitrary complex numbers, then

∞∑
n=0

(−1)n(a2q2/b; q2)nbnqn(n+1)

(q2; q2)n(−aq; q)2n+1

=
(bq2; q2)∞
(a2q2; q2)∞

∞∑
n=0

(aq; q)n(a2q2/b; q2)n(1 − aq2n+1)anbnqn(5n+3)/2

(q; q)n(bq2; q2)n
.

Proof. In (4.1.5), let b and ρ2 tend to ∞. Replace a by aq and then set
ρ1 = a2q2/b. Finally, multiply both sides by 1/(1+aq) to complete the proof.

��

Entry 4.3.6 (p. 28). If a is arbitrary, then

∞∑
n=0

(−1)na2nqn(n+1)

(−aq)2n+1
=

∞∑
n=0

(−q)n(1 − aq2n+1)a3nqn(5n+3)/2

(−aq)n
.
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Proof. Set b = a2 in the previous entry and simplify. ��

The next entry as listed by Ramanujan does not contain enough terms
to completely determine each side. However, the following interpretation is
consistent with what Ramanujan has written.

Entry 4.3.7 (p. 26). Let a and b be arbitrary complex numbers. Then

∞∑
n=0

(−1)n(a2q2/b; q2)nbnqn2+n

(q2; q2)n(−aq; q)2n

=
(bq2; q2)∞
(a2q2; q2)∞

∞∑
n=0

(aq; q)n(a2q2/b; q2)n(1 − a2q4n+2)anbnqn(5n+1)/2

(q; q)n(bq2; q2)n
.

(4.3.1)

Proof. In (4.3.1), replace b by a2q2/b and multiply both sides by (−aq; q)∞.
Then (4.3.1) is equivalent to the assertion

L2(a) = R2(a),

where

L2(a) :=
∞∑

n=0

(−1)n(b; q2)n(−aq2n+1; q)∞a2nb−nqn2+3n

(q2; q2)n

and

R2(a) :=
(a2q4/b; q2)∞

(aq; q)∞

∞∑
n=0

(aq; q)n(b; q2)n(1 − a2q4n+2)a3nb−nq5n(n+1)/2

(q; q)n(a2q4/b; q2)n
.

We now rewrite Entry 4.3.5 by replacing b by a2q2/b therein and multi-
plying both sides by (−aq; q)∞. The revision of Entry 4.3.5 now takes the
form

L1(a) = R1(a),

where

L1(a) :=
∞∑

n=0

(−1)n(b; q2)n(−aq2n+2; q)∞a2nb−nqn(n+3)

(q2; q2)n

and

R1(a) :=
(a2q4/b; q2)∞

(aq; q)∞

∞∑
n=0

(aq; q)n(b; q2)n(1 − aq2n+1)a3nb−nqn(5n+7)/2

(q; q)n(a2q4/b; q2)n
.

Our object now is to prove that L2(a) = R2(a) in light of the fact that
L1(a) = R1(a).

First,
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L2(a) − aqL2(aq) =
∞∑

n=0

(−1)n(b; q2)n(−aq2n+2; q)∞a2nb−nqn(n+3)

(q2; q2)n

×
(
1 + aq2n+1 − aq2n+1

)
= L1(a). (4.3.2)

Secondly,

R2(a) − R1(a)

=
∞∑

n=0

(b; q2)n(a2q2n+4/b; q2)∞a3nb−nq5n(n+1)/2

(q; q)n(aqn+1; q)∞

×
{
(1 − a2q4n+2) − qn(1 − aq2n+1)

}

=
∞∑

n=0

(b; q2)n(a2q2n+4/b; q2)∞a3nb−nq5n(n+1)/2

(q; q)n(aqn+1; q)∞

×
{
(1 − qn) + aq3n+1(1 − aqn+1)

}

=
∞∑

n=1

(b; q2)n(a2q2n+4/b; q2)∞a3nb−nq5n(n+1)/2

(q; q)n−1(aqn+1; q)∞

+
∞∑

n=0

(b; q2)n(a2q2n+4/b; q2)∞a3n+1b−nq5n(n+1)/2+3n+1

(q; q)n(aqn+2; q)∞

=
∞∑

n=0

(b; q2)n+1(a2q2n+6/b; q2)∞a3n+3b−n−1q5n(n+1)/2+5n+5

(q; q)n(aqn+2; q)∞

+
∞∑

n=0

(b; q2)n(a2q2n+4/b; q2)∞a3n+1b−nq5n(n+1)/2+3n+1

(q; q)n(aqn+2; q)∞

= aq
∞∑

n=0

(b; q2)n(a2q2n+6/b; q2)∞(aq)3nb−nq5n(n+1)/2

(q; q)n(aqn+2; q)∞

×
{
a2b−1q2n+4(1 − bq2n) + (1 − a2q2n+4/b)

}

= aq
∞∑

n=0

(b; q2)n((aq)2q2n+4/b; q2)∞(1 − (aq)2q4n+2)(aq)3nb−nq5n(n+1)/2

(q; q)n((aq)qn+1; q)∞

= aqR2(aq). (4.3.3)

Now, from (4.3.2),

L2(a) = L1(a) + aq L2(aq),

and by iteration we may deduce that

L2(a) =
∞∑

j=0

(aq)jL1(aqj).

We then proved in (4.3.3) that
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R2(a) = R1(a) + aq R2(aq),

and again by iteration we may conclude that

R2(a) =
∞∑

j=0

(aq)jR1(aqj).

But we know that R1(a) = L1(a) from Entry 4.3.5. Therefore,

L2(a) =
∞∑

j=0

(aq)jL1(aqj) =
∞∑

j=0

(aq)jR1(aqj) = R2(a),

and this is the desired result. ��

Entry 4.3.8 (p. 28). If a is any complex number, then

∞∑
n=0

(−1)na2nqn(n+1)

(−aq)2n
=

∞∑
n=0

(−q)n(1 − a2q4n+2)a3nqn(5n+1)/2

(−aq)n
. (4.3.4)

Proof. Let us call the left- and right-hand sides of (4.3.4) L8(a) and R8(a),
respectively. Thus, we need to prove that

L8(a) = R8(a). (4.3.5)

Also, let L6(a) and R6(a) denote the left- and right-hand sides of Entry 4.3.6.
In particular,

L6(a) :=
∞∑

n=0

(−1)na2nqn(n+1)

(−aq)2n+1
.

Then, we see that

a2q2

1 + aq
L6(aq) =

∞∑
n=0

(−1)na2n+2qn2+3n+2

(−aq)2n+2
= 1 − L8(a). (4.3.6)

On the other hand, since

R6(a) :=
∞∑

n=0

(−q)n(1 − aq2n+1)a3nqn(5n+3)/2

(−aq)n
,

we find that

R8(a) +
a2q2

1 + aq
R6(aq)

=
∞∑

n=0

(−q)n(1 − a2q4n+2)a3nqn(5n+1)/2

(−aq)n
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+
∞∑

n=0

(−q)n(1 − aq2n+2)a3n+2qn(5n+9)/2+2

(−aq)n+1

=
∞∑

n=0

(−q)na3nqn(5n+1)/2

(−aq)n
−

∞∑
n=0

(−q)na3n+2qn(5n+9)/2+2

(−aq)n

+
∞∑

n=0

(−q)na3n+2qn(5n+9)/2+2

(−aq)n+1
−

∞∑
n=1

(−q)n−1a
3nqn(5n+3)/2

(−aq)n
.

Now combine the first and fourth sums and the second and third sums on the
right-hand side above to deduce that

R8(a) +
a2q2

1 + aq
R6(aq)

= 1 +
∞∑

n=1

(−q)n−1a
3nqn(5n+1)/2

(−aq)n
((1 + qn) − qn)

−
∞∑

n=0

(−q)na3n+2qn(5n+9)/2+2

(−aq)n+1

(
(1 + aqn+1) − 1

)

= 1 +
∞∑

n=1

(−q)n−1a
3nqn(5n+1)/2

(−aq)n
−

∞∑
n=1

(−q)n−1a
3nqn(5n+1)/2

(−aq)n

= 1.

Hence, using (4.3.6), Entry 4.3.6, and the last equality above, we conclude
that

L8(a) = 1 − a2q2

1 + aq
L6(aq)

= 1 − a2q2

1 + aq
R6(aq)

= 1 − 1 + R8(a) = R8(a).

Thus, (4.3.5) has been demonstrated, as desired. ��

Entry 4.3.9 (p. 27). If a is an arbitrary complex number, then

(aq; q)∞
∞∑

n=0

anqn2

(q; q)n(aq; q2)n
=

∞∑
n=0

(−1)n(aq; q2)n(1 − a2q8n+2)a3nq7n2

(q2; q2)n
.

The instance a = 1 of Entry 4.3.9 is identity (61) and the instance a = q2 is
identity (59) in Slater’s paper [262]. These identities also appear in Rogers’s
paper [248], but the case in which a = 1 first appeared in Rogers’s earlier
paper [247]. Our proof is based on the work of A. Sills [261].
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Proof. We define, for i = 1, 2, 3,

Si(a; q) :=
∞∑

n=0

anqn2+(3−i)n

(q; q)n(aq; q2)n+[(5−i)/3]
.

First, by inspection,

S1(a; q) =
S3(aq2; q)

1 − aq
. (4.3.7)

Next,

S2(a; q) − S1(a; q) =
∞∑

n=1

(1 − qn)anqn2+n

(q; q)n(aq; q2)n+1

=
∞∑

n=0

an+1qn2+3n+2

(q; q)n(aq; q2)n+2
=

aq2

1 − aq
S2(aq2; q), (4.3.8)

and

S3(a; q) − S2(a; q) =
∞∑

n=0

(1 − aq2n+1 − qn)anqn2

(q; q)n(aq; q2)n+1

=
∞∑

n=1

anqn2

(q; q)n−1(aq; q2)n+1
− aq

∞∑
n=0

anqn2+2n

(q; q)n(aq; q2)n+1

=
∞∑

n=0

an+2q(n+2)2

(q; q)n(aq; q2)n+2

=
a2q4

1 − aq
S1(aq2; q). (4.3.9)

Iteration of the three functional equations (4.3.7)–(4.3.9) together with the
initial values Si(0; q) = 1 reveals that these three equations uniquely define
Si(0; q), i = 1, 2, 3.

Next, we note that if [8]

Qk,i(a; q) :=
∞∑

n=0

(−1)n(1 − aiq(2n+1)i)aknq(2k+1)n(n+1)/2−in

(q; q)n(aqn+1)∞
, (4.3.10)

then
Qk,i(a; q) − Qk,i−1(a; q) = ai−1qi−1Qk,k−i+1(aq; q). (4.3.11)

Now define, for i = 1, 2, 3,

Ti(a; q) :=
Q3,i(a; q2)
(aq; q2)∞

,

from which it immediately follows that
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Ti(a; 0) = 1, 1 ≤ i ≤ 3.

Using (4.3.11) with k = 3 and i = 1 and the fact that Q3,0(a; q) ≡ 0, which is
immediately deducible from the definition (4.3.10), we find that

T1(a; q) =
T3(aq2; q)

1 − aq
. (4.3.12)

Using (4.3.11) with q replaced by q2 and with k = 3 and i = 2, we find that

T2(a; q) − T1(a; q) =
aq2

1 − aq
T2(aq2; q). (4.3.13)

Lastly, using (4.3.11) with k = i = 3 and q replaced by q2, we deduce that

T3(a; q) − T2(a; q) =
a2q4

1 − aq
T1(aq2; q). (4.3.14)

Thus, Ti(a; q), i = 1, 2, 3, satisfies the same initial conditions and func-
tional equations (4.3.12)–(4.3.14) as those satisfied by Si(a; q) in (4.3.7)–
(4.3.9). Hence, for i = 1, 2, 3,

Ti(a; q) = Si(a; q).

What is important for us is this assertion for i = 2, because the assertion of
Entry 4.3.9 is equivalent to

(aq; q)∞T2(a/q; q) = (aq; q)∞S2(a/q; q).

Hence, the proof is complete. ��



5

Bailey’s Lemma and Theta Expansions

5.1 Introduction

Most of the entries to be established in this chapter were originally proved
in [22]. That paper appeared before the discoveries presented in [24] were
made. It is now possible to present these results in a way that makes clear
their relationship to the hierarchy of q-hypergeometric identities growing out
of Bailey’s lemma [41, equation (3.1)].

In Section 5.2, we prove the two central lemmas of [22] by means of Bailey’s
lemma. These are identities (5.2.3) and (5.2.4). Section 5.3 is devoted to the
corollaries of (5.2.3), and Section 5.4 to those of (5.2.4).

The term “theta expansions” refers to the fact that (5.2.3) and (5.2.4) each
involve partial products related to Jacobi’s triple product identity (1.4.8).

5.2 The Main Lemma

A pair of sequences {αn} and {βn} related by the identity

βn =
n∑

r=0

αr

(q)n−r(aq)n+r
(5.2.1)

is called a Bailey pair. For a Bailey pair {αn} and {βn}, Bailey’s lemma [41,
equation (3.1)] is given by

∞∑
n=0

(ρ1)n(ρ2)n

(
aq

ρ1ρ2

)n

βn

=
(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/(ρ1ρ2))∞

∞∑
n=0

(ρ1)n(ρ2)n

(aq/ρ1)n(aq/ρ2)n

(
aq

ρ1ρ2

)n

αn. (5.2.2)

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 6, c© Springer Science+Business Media, LLC 2009
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Bailey’s proof consists in substituting the expression for βn from (5.2.1) into
the left-hand side of (5.2.2), interchanging the order of summation, and then
summing the interior series by invoking (1.2.9) with t = c/(ab).

We now construct two Bailey pairs. First, with a = 1 and q replaced by
q2, we set α0 = 1 and

αN = (xN + x−N )qN2
, N ≥ 1.

Then, using (1.7.3) in the penultimate step below, we find that

βN =
1

(q2; q2)2N
+

N∑
r=1

(xr + x−r)qr2

(q2; q2)N−r(q2; q2)N+r

=
N∑

r=−N

xrqr2

(q2; q2)N−r(q2; q2)N+r

=
1

(q2; q2)2N

N∑
r=−N

[
2N

N + r

]
q2

xrqr2

=
1

(q2; q2)2N

2N∑
r=0

[
2N
r

]
q2

xr−Nq(r−N)2

=
x−NqN2

(q2; q2)2N
(−xq−2N+1; q2)2N

=
(−xq; q2)N (−x−1q; q2)N

(q2; q2)2N
.

Inserting this pair into (5.2.2) and recalling that q has been replaced by q2

and that a = 1, we obtain Lemma 1 from [22], which is given by

∞∑
n=0

(ρ1; q2)n(ρ2; q2)n(−xq; q2)n(−x−1q; q2)n

(q2; q2)2n

(
q2

ρ1ρ2

)n

(5.2.3)

=
(q2/ρ1; q2)∞(q2/ρ2; q2)∞
(q2; q2)∞(q2/(ρ1ρ2); q2)∞

×
(

1 +
∞∑

N=1

(ρ1; q2)N (ρ2; q2)N (xN + x−N )ρ−N
1 ρ−N

2 qN2+2N

(q2/ρ1; q2)N (q2/ρ2; q2)N

)

=
(q2/ρ1; q2)∞(q2/ρ2; q2)∞
(q2; q2)∞(q2/(ρ1ρ2); q2)∞

∞∑
N=−∞

(ρ1; q2)N (ρ2; q2)N

(q2/ρ1; q2)N (q2/ρ2; q2)N

(
xq2

ρ1ρ2

)N

qN2
.

Next we construct a Bailey pair now with a = q and

αN = (xN+1 + x−N )qN(N+1)/2, N ≥ 0.

Hence, using (1.7.3) in the penultimate step below, we deduce that
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βN = (1 − q)
N∑

r=0

(xr+1 + x−r)qr(r+1)/2

(q)N−r(q)N+r+1

=
(1 − q)
(q)2N+1

N∑
r=0

[
2N + 1
N − r

]
(xr+1 + x−r)qr(r+1)/2

=
1

(q2)2N

N∑
r=−N−1

[
2N + 1
N − r

]
x−rqr(r+1)/2

=
1

(q2)2N

2N+1∑
r=0

[
2N + 1

r

]
x−N+rq(N−r)(N−r+1)/2

=
x−NqN(N+1)/2

(q2)2N

2N+1∑
r=0

[
2N + 1

r

]
xrqr(r−1)/2−rN

=
x−NqN(N+1)/2

(q2)2N
(−xq−N )2N+1

=
(−x)N+1(−q/x)N

(q2)2N
.

Inserting this pair into (5.2.2), recalling that a = q, and dividing both sides
by (1 − q), we obtain Lemma 2 from [22] given by

∞∑
n=0

(−x)n+1(−q/x)n(ρ1)n(ρ2)n

(q)2n+1

(
q2

ρ1ρ2

)n

(5.2.4)

=
(q2/ρ1)∞(q2/ρ2)∞
(q)∞(q2/(ρ1ρ2))∞

∞∑
n=0

(ρ1)n(ρ2)n

(q2/ρ1)n(q2/ρ2)n
(xn+1 + x−n)

(
q2

ρ1ρ2

)n

qn(n+1)/2.

5.3 Corollaries of (5.2.3)

Entry 5.3.1 (p. 33). Recall that f(a, b) is defined in (1.4.8). Then, for a �= 0,

∞∑
n=0

(−aq; q2)n(−q/a; q2)n

(q2; q2)2n
q2n2

=
f(aq3, q3/a)
(q2; q2)∞

. (5.3.1)

First Proof of Entry 5.3.1. In (5.2.3), set x = a and let ρ1 and ρ2 tend to
∞. ��

In her thesis [225], Padmavathamma gave a different proof of Entry 5.3.1,
independent of Bailey’s theorems. We need two preliminary results: one is a
decomposition found in P.A. MacMahon’s book [216, p. 75], and the other a
corollary of the q-Gauss summation theorem, Entry 1.3.1.
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Lemma 5.3.1. If i and j are arbitrary nonnegative integers, then

(−aq; q2)i(−q/a; q2)j =
(q2; q2)i+j

(q2; q2)i(q2; q2)j
+

i∑
m=1

(q2; q2)i+ja
mqm2

(q2; q2)i−m(q2; q2)j+m

+
j∑

m=1

(q2; q2)i+ja
−mqm2

(q2; q2)i+m(q2; q2)j−m
.

Lemma 5.3.2. If |a| < 1,

∞∑
n=0

anqn2−n

(a)n(q)n
=

1
(a)∞

.

First Proof of Entry 5.3.1. Letting b and c tend to 0 in (1.3.8), we immedi-
ately deduce the desired result. ��

If we replace a by aq in the last lemma, we obtain a classical generating
function for the partition function p(n) due to Euler.

Second Proof of Entry 5.3.1. Multiplying both sides of (5.3.1) by (q2; q2)∞,
we write the identity to be proved in the equivalent form

F (a; q) :=
∞∑

n=0

(−aq; q2)n(−q/a; q2)n(q4n+2; q2)∞q2n2
= f(aq3, q3/a). (5.3.2)

Invoking Lemma 5.3.1 with i = j = n, we find that

(−aq; q2)n(−q/a; q2)n =
(q2; q2)2n

(q2; q2)2n
+

n∑
m=1

c(m,n)(am + a−m), (5.3.3)

where

c(m,n) :=
(q2; q2)2nqm2

(q2; q2)n+m(q2; q2)n−m
. (5.3.4)

Note that
∞∑

n=0

qn2

(q; q)2n
=

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where p(n) denotes the ordinary partition function, and so

(q2; q2)∞
∞∑

n=0

q2n2

(q2; q2)2n
= 1. (5.3.5)

Putting (5.3.3) in (5.3.2), inverting the order of summation, employing (5.3.5),
recalling (5.3.4), replacing n by m + k, and employing Lemma 5.3.2 with q
replaced by q2 and a = q4m+2, we find that



5.3 Corollaries of (5.2.3) 101

F (a; q) =
∞∑

n=0

(q2; q2)2n(q4n+2; q2)∞
(q2; q2)2n

q2n2

+
∞∑

n=0

(q4n+2; q2)∞q2n2
n∑

m=1

c(m,n)(am + a−m)

= (q2; q2)∞
∞∑

n=0

q2n2

(q2; q2)2n

+
∞∑

m=1

(am + a−m)
∞∑

n=m

c(m,n)(q4n+2; q2)∞q2n2

= 1 +
∞∑

m=1

(am + a−m)
∞∑

n=m

(q4n+2; q2)∞(q2; q2)2n

(q2; q2)m+n(q2; q2)n−m
q2n2+m2

= 1 + (q2; q2)∞
∞∑

m=1

(am + a−m)qm2
∞∑

n=m

q2n2

(q2; q2)n+m(q2; q2)n−m

= 1 + (q2; q2)∞
∞∑

m=1

(am + a−m)q3m2
∞∑

k=0

q2k2+4mk

(q2; q2)2m+k(q2; q2)k

= 1 + (q2; q2)∞
∞∑

m=1

(am + a−m)q3m2

(q2; q2)2m

∞∑
k=0

q(4m+2)kq2k(k−1)

(q4m+2; q2)k(q2; q2)k

= 1 + (q2; q2)∞
∞∑

m=1

(am + a−m)q3m2

(q2; q2)2m(q4m+2; q2)∞

= 1 +
∞∑

m=1

(am + a−m)q3m2

= f(aq3, q3/a).

Thus, (5.3.2) has been established, and so the proof is complete. ��

The next entry is equation (29) on L.J. Slater’s list [262].

Entry 5.3.2 (p. 33). If f(a, b) and ψ(q) are defined by (1.4.8) and (1.4.10),
respectively, then

∞∑
n=0

(−q; q2)n

(q; q)2n
qn2

=
f(q2, q4)
ψ(−q)

.

Proof. First, observe that

∞∑
n=−∞

q3(2n+1)2/2i2n+1 = 0. (5.3.6)

Second, in Entry 5.3.1, set a = i and then replace q by
√

q. In the resulting
sum on the right-hand side, we may replace n by 2n, because the terms with
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odd index sum to 0 by (5.3.6). Consequently, eventually using (1.4.9) and
(1.4.8), we find that

∞∑
n=0

(−q; q2)n

(q; q)2n
qn2

=
1

(q; q)∞

∞∑
n=−∞

q6n2
i2n

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq6n2

=
(q6; q6)∞

(−q6; q6)∞(q; q)∞

=
(q6; q6)∞(−q2; q6)∞(−q4; q6)∞(−q6; q6)∞
(−q6; q6)∞(−q2; q2)∞(q; q2)∞(q2; q2)∞

=
f(q2, q4)

(q; q4)∞(q3; q4)∞(q4; q4)∞

=
f(q2, q4)

f(−q,−q3)
=

f(q2, q4)
ψ(−q)

,

by (1.4.10). ��

Entry 5.3.3 (p. 33). If f(a, b) and ψ(q) are defined by (1.4.8) and (1.4.10),
respectively, then

∞∑
n=0

(q; q2)2n
(q2; q2)2n

q2n2
=

f(q, q2)
ψ(q)

.

Proof. Set a = −1 in Entry 5.3.1. Using (1.4.9), Euler’s identity, (1.4.10),
and (1.4.8), we find that

∞∑
n=0

(q; q2)2n
(q2; q2)2n

q2n2
=

1
(q2; q2)∞

∞∑
n=−∞

(−1)nq3n2

=
(q3; q3)∞

(−q3; q3)∞(q2; q2)∞

=
(q; q2)∞
(q2; q2)∞

(q3; q3)∞(−q; q)∞
(−q3; q3)∞

=
(−q; q3)∞(−q2; q3)∞(q3; q3)∞

ψ(q)

=
f(q, q2)
ψ(q)

.

��

The next entry is kindred to two identities of Slater [262, equations (124)
and (125)] but does not appear in her list.
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Entry 5.3.4 (p. 33, corrected). If f(a, b) and f(−q) are defined by (1.4.8)
and (3.1.3), respectively, then

∞∑
n=0

(q3; q6)n

(q; q2)n(q2; q2)2n
q2n2

=
f(−q,−q5)

f(−q)
(q9; q18)∞. (5.3.7)

Ramanujan’s function χ(q) is defined by

χ(q) := (−q; q2)∞.

Thus, the last factor on the right-hand side of (5.3.7) can be written as χ(−q9).
There does not seem to be any advantage to expressing (5.3.7), or any other
identity in the early chapters of this volume, in terms of χ(q), however.

Proof. First note that

(e2πi/3q; q2)n(e−2πi/3q; q2)n =
(q3; q6)n

(q; q2)n
, (5.3.8)

and that, by (1.4.8),

f(−e2πi/3q3,−e−2πi/3q3) = (e2πi/3q3; q6)∞(e−2πi/3q3; q6)∞(q6; q6)∞

=
(q9; q18)∞(q6; q6)∞

(q3; q6)∞
. (5.3.9)

In Entry 5.3.1, set a = −e2πi/3. Hence, using (5.3.8), (5.3.9), and (1.4.8), we
find that

∞∑
n=0

(q3; q6)n

(q; q2)n(q2; q2)2n
q2n2

=
1

(q2; q2)∞
f(−e2πi/3q3,−e−2πi/3q3)

=
(q9; q18)∞(q6; q6)∞
(q3; q6)∞(q2; q2)∞

=
(q; q6)∞(q3; q6)∞(q5; q6)∞(q6; q6)∞(q9; q18)∞

(q3; q6)∞(q; q2)∞(q2; q2)∞

=
f(−q,−q5)

f(−q)
(q9; q18)∞.

��

The following entry can be obtained from a result in Andrews’s paper [15,
p. 526, equation (1.9)] by replacing q by q2, setting b = −aq, and setting c = q.

Entry 5.3.5 (p. 33). If f(a, b) and ψ(q) are defined by (1.4.8) and (1.4.10),
respectively, and if a �= 0, then

∞∑
n=0

(−aq; q2)n(−a−1q; q2)n

(q; q2)n(q4; q4)n
qn2

=
f(aq2, q2/a)

ψ(−q)
.



104 5 Bailey’s Lemma and Theta Expansions

Proof. In (5.2.3), set x = a and ρ1 = −q, and let ρ2 → ∞. Consequently,
after simplification,

∞∑
n=0

(−aq; q2)n(−a−1q; q2)n

(q; q2)n(q4; q4)n
qn2

=
(−q; q2)∞
(q2; q2)∞

∞∑
N=−∞

aNq2N2
=

f(aq2, q2/a)
ψ(−q)

,

by (1.4.10) and (1.4.8). ��

Different proofs of Entries 5.3.1–5.3.5 were devised by Padmavathamma
[225]. The next entry can be found in Slater’s paper [262, equation (4)].

Entry 5.3.6 (p. 33). If f(−q) is defined by (3.1.3), then
∞∑

n=0

(±1)n(−q; q2)n

(q4; q4)n
qn2

=
f(±q,±q2)

f(−q4)
.

Proof. First we consider the case in which we take the minus sign. Here
replace q by −q and then set a = −1 in Entry 5.3.5. Thus, using (1.4.10), the
Jacobi triple product identity (1.4.8), and (1.4.9), we find that

∞∑
n=0

(−1)n(−q; q2)n

(q4; q4)n
qn2

=
f(−q2,−q2)

ψ(q)
=

ϕ(−q2)
f(q, q3)

=
(q2; q2)∞

(−q2; q2)∞(−q; q4)∞(−q3; q4)∞(q4; q4)∞

=
(q2; q2)∞

(−q; q)∞(q4; q4)∞
=

(q; q)∞
(q4; q4)∞

=
f(−q)
f(−q4)

,

by (3.1.3). Since f(−q) = f(−q,−q2), the proof of the first case is finished.
The case for the plus sign follows from a special case of Entry 4.2.3. Namely,

divide both sides of Entry 4.2.3 by (1−aq), then replace q by q2, and lastly set
a = 1/q2, b = 1/q, and c = 1. Multiplying both sides by (−q; q2)∞/(q2; q2)∞,
simplifying considerably, and using (1.4.9) and (1.4.8), we find that

∞∑
n=0

(−q; q2)n

(q4; q4)n
qn2

=
(−q; q2)∞
(q2; q2)∞

(
1 + 2

∞∑
n=1

(−1)nq3n2

)

=
(−q; q2)∞(q3; q3)∞
(q2; q2)∞(−q3; q3)∞

=
(−q; q)∞(q3; q3)∞

(q4; q4)∞(−q3; q3)∞

=
(−q; q3)∞(−q2; q3)∞(q3; q3)∞

(q4; q4)∞

=
f(q, q2)
f(−q4)

,

which is what we wanted to prove. ��
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Entry 5.3.7 (p. 33). If ψ(q) is defined by (1.4.10) and f(−q) is defined by
(3.1.3), then

∞∑
n=0

(−q; q2)n

(q4; q4)n
qn2+2n =

ψ(q3)
f(−q4)

.

We include this entry in this chapter because of its similarity to Entry
5.3.6, even though its proof is based on an identity in Chapter 4. Observe that
in Entry 4.2.11, recorded eight pages earlier in his lost notebook, Ramanujan
wrote Entry 5.3.7 in a slightly different form.

Proof. In Entry 4.2.3, replace q by q2 and set a = 1, b = q, and c = 1. Multiply
both sides by 1/(1+q). Then multiply both sides by (−q; q2)∞/(q2; q2)∞. After
simplification and using (1.4.8), we find that

∞∑
n=0

(−q; q2)n

(q4; q4)n
qn2+2n =

(−q; q2)∞
(q2; q2)∞

∞∑
n=0

(−1)n(1 − q2n+1)q3n2+2n

=
(−q; q2)∞
(q2; q2)∞

f(−q,−q5)

=
(−q; q2)∞
(q2; q2)∞

(q; q6)∞(q5; q6)∞(q6; q6)∞

=
(−q; q2)∞(q; q2)∞(q6; q6)∞

(q2; q2)∞(q3; q6)∞

=
(q6; q6)∞

(q4; q4)∞(q3; q6)∞

=
ψ(q3)

f(−q4)
,

by (1.4.10). ��

Entry 5.3.8 (p. 33). We have

∞∑
n=0

(−q3; q6)n

(q2; q2)2n
qn2

=
ψ(−q2)
ψ(−q)

(−q6; q12)∞.

Proof. In Entry 5.3.5, set a = e2πi/3. Observe that

(−e2πi/3q; q2)n(−e−2πi/3q; q2)n

(q; q2)n(q4; q4)n
=

(−q3; q6)n

(−q; q2)n(q; q2)n(q4; q4)n
=

(−q3; q6)n

(q2; q2)2n
,

and, by (1.4.8),

f(e2πi/3q2, e−2πi/3q2) = (−e2πi/3q2; q4)∞(−e−2πi/3q2; q4)∞(q4; q4)∞

=
(−q6; q12)∞(q4; q4)∞

(−q2; q4)∞
.
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Using the calculations above in Entry 5.3.5, we find that

∞∑
n=0

(−q3; q6)n

(q2; q2)2n
qn2

=
f(e2πi/3q2, e−2πi/3q2)

ψ(−q)

=
(−q6; q12)∞(q4; q4)∞

ψ(−q)(−q2; q4)∞

=
ψ(−q2)
ψ(−q)

(−q6; q12)∞,

by (1.4.10). ��

Entry 5.3.9 (p. 33, corrected). We have

∞∑
n=0

(q3; q6)nqn2

(q; q2)2n(q4; q4)n
=

ψ(q2)
ψ(−q)

(q6; q12)∞.

Proof. In Entry 5.3.5, set a = eπi/3. Using calculations very similar to those
of the previous proof, we find that

∞∑
n=0

(q3; q6)nqn2

(q; q2)2n(q4; q4)n
=

f(eπi/3q2, e−πi/3q2)
ψ(−q)

=
(−eπi/3q2; q4)∞(−e−πi/3q2; q4)∞(q4; q4)∞

ψ(−q)

=
(q6; q12)∞(q4; q4)∞

ψ(−q)(q2; q4)∞

=
ψ(q2)
ψ(−q)

(q6; q12)∞,

by (1.4.10). ��

A. Sills has pointed out that Entry 5.3.9 is, in fact, a specialization of
the q-analogue of Bailey’s theorem [15, p. 526, equation (1.9)]; namely, one
replaces q by q2 and then sets b = qe2πi/3 and c = q to obtain Entry 5.3.9.
In addition, Sills notes that Entry 5.3.9 can be obtained by taking equation
(109) minus q times equation (110) (corrected) in Slater’s compendium of
Rogers–Ramanujan-type identities [262].

Entry 5.3.10 (p. 33). Formally, for a �= 0,

∞∑
n=0

(−1)n(−aq; q2)n(−q/a; q2)n

(q4; q4)n
=

f(−aq,−q/a)
2ψ(q2)

. (5.3.10)

The series on the left-hand side of (5.3.10) is divergent for all q. However,
if we set ρ1 = q and ρ2 = −q in (5.2.3), we see that term by term, the left
side of the resulting identity coincides with the left side of (5.3.10).
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Proof. We interpret the left-hand side of (5.3.10) as

∞∑
n=0

(−1)n(−aq; q2)n(−q/a; q2)n

(q4; q4)n

= lim
ρ1→q

ρ2→−q

∞∑
n=0

(ρ1; q2)n(ρ2; q2)n(−aq; q2)n(−a−1q; q2)n

(q; q2)n(−q; q2)n(q4; q4)n

(
q2

ρ1ρ2

)n

= lim
ρ1→q

ρ2→−q

(q2/ρ1; q2)∞(q2/ρ2; q2)∞
(q2; q2)∞(q2/(ρ1ρ2); q2)∞

×
(

1 +
∞∑

N=1

(ρ1; q2)N (ρ2; q2)N (aN + a−N )
(q2/ρ1; q2)N (q2/ρ2; q2)N

(
1

ρ1ρ2

)N

qN2+2N

)

=
(q2; q4)∞
2(q4; q4)∞

∞∑
N=−∞

(−1)NaNqN2

=
f(−aq,−q/a)

2ψ(q2)
,

by (1.4.8) and (1.4.10). ��

Another formal argument yielding Entry 5.3.10 was devised by Padma-
vathamma [225].

We have seen in this chapter many beautiful representations for quo-
tients of theta functions by q-series. In particular, several representations for
f(qa, qb)/ψ(q) for various a and b have been proved. D. Bowman, J. McLaugh-
lin, and A. Sills [94] have recently found a q-series representation for
f(q, q4)/ψ(q) that Ramanujan apparently did not discover.

5.4 Corollaries of (5.2.4) and Related Results

Entry 5.4.1 (p. 34). For a �= 0,−1,

1
a1/2 + a−1/2

∞∑
n=0

(−1)n(an+1/2 + a−n−1/2)qn(n+1)

=
∞∑

n=0

(−1)n(−aq)n(−q/a)n

(qn+1)n+1
qn(n+1)/2.

First Proof of Entry 5.4.1. In (5.2.4), let x = a and ρ1 = q, and then let
ρ2 → ∞. After simplification, we find that

(1 + a)
∞∑

n=0

(−1)n(−aq)n(−q/a)n

(qn+1)n+1
qn(n+1)/2 =

∞∑
n=0

(−1)n
(
an+1 + a−n

)
qn(n+1).

(5.4.1)
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If we now divide both sides of this last equality by (1 + a) and then multiply
the numerator and denominator on the right-hand side by a−1/2, we obtain
the desired result. ��

Padmavathamma [225] has also proved Entry 5.4.1 as well as the following
entry. Since her proof of Entry 5.4.1 is quite different, we provide it here.
We need two preliminary results: Lemma 5.3.1 and a corollary of Heine’s
transformation (1.1.3).

Lemma 5.4.1. For 0 < |b| < 1,

∞∑
n=0

(b)nznqn(n−1)/2

(c)n(q)n
=

(b)∞(−z)∞
(c)∞

∞∑
m=0

(c/b)mbm

(−z)m(q)m
.

First Proof of Entry 5.4.1. In Heine’s transformation (1.1.3), replace a by
a/d, set t = dz, let a = 1, and let d tend to 0. ��

Second Proof of Entry 5.4.1. Setting i = n and j = n + 1, replacing q2 by q,
and then replacing a by a

√
q in Lemma 5.3.1, we find that

(−aq)n(−1/a)n+1 =
n∑

m=0

(q)2n+1a
mqm(m+1)/2

(q)n−m(q)m+n+1
+

n+1∑
m=1

(q)2n+1a
−mqm(m−1)/2

(q)m+n(q)n−m+1
.

(5.4.2)
For brevity, set

c(m,n) :=
(q)2n+1q

m(m+1)/2

(q)n−m(q)m+n+1
.

Observe that c(m,n) = c(−m − 1, n). Thus, we can write (5.4.2) in the ab-
breviated form

(−aq)n(−1/a)n+1 =
n∑

m=0

c(m,n)
(
am + a−m−1

)
. (5.4.3)

Multiplying both sides of (5.4.1) by 1 + 1/a, we find that it suffices to
prove that

∞∑
n=0

(−1)n
(
an + a−n−1

)
qn(n+1) =

∞∑
n=0

(−1)n(−aq)n(−1/a)n+1

(qn+1)n+1
qn(n+1)/2.

(5.4.4)
Using (5.4.3) in (5.4.4) and inverting the order of summation, we now find
that it is sufficient to show that

∞∑
n=0

(−1)n
(
an + a−n−1

)
qn(n+1)

=
∞∑

m=0

∞∑
n=m

(−1)nc(m,n)(am + a−m−1)
(qn+1)n+1

qn(n+1)/2.
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Hence, it suffices to prove that for each nonnegative integer m,

∞∑
n=m

(−1)nc(m,n)qn(n+1)/2

(qn+1)n+1
= (−1)mqm(m+1). (5.4.5)

Now, setting t = qm+1 below, we find that

∞∑
n=m

(−1)nc(m,n)qn(n+1)/2

(qn+1)n+1
= (−1)m

∞∑
k=0

(−1)kc(m,m + k)q(m+k)(m+k+1)/2

(qm+k+1)m+k+1

= (−1)mqm(m+1)
∞∑

k=0

(−1)k(q)2m+2k+1q
mkqk(k+1)/2

(q)k(q)2m+k+1(qm+k+1)m+k+1

=
(−1)mqm(m+1)

(qm+1)m+1

∞∑
k=0

(−1)k(qm+1)kq(m+1)kqk(k−1)/2

(q)k(q2m+2)k

=
(−1)mqm(m+1)

(t)m+1

∞∑
k=0

(−1)k(t)ktkqk(k−1)/2

(q)k(t2)k
.

Apply Lemma 5.4.1 with b = t, z = −t, and c = t2 in the last line above and
then invoke (1.2.3) to deduce that

∞∑
n=m

(−1)nc(m,n)qn(n+1)/2

(qn+1)n+1
=

(−1)mqm(m+1)

(t)m+1

(t)2∞
(t2)∞

∞∑
m=0

tm

(q)m

= (−1)mqm(m+1)(t)∞
1

(t)∞
= (−1)mqm(m+1),

because, since t = qm+1,
(t)∞
(t2)∞

= (t)m+1.

��

The next entry was first discovered by F.J. Dyson and proved by Bailey
[40, p. 434, equation (E2)].

Entry 5.4.2 (p. 34). We have

∞∑
n=0

(−1)n(q3; q3)n

(q; q)2n+1
qn(n+1)/2 = f(q12, q6).

Proof. In Entry 5.4.1, set a = −e2πi/3 = e−πi/3 and observe that

(−1)n an+1/2 + a−n−1/2

a1/2 + a−1/2
= (−1)n an+1 + a−n

a + 1
=

⎧⎪⎨
⎪⎩

1, if n ≡ 0 (mod 3),
0, if n ≡ 1 (mod 3),
−1, if n ≡ 2 (mod 3).
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Hence, from Entry 5.4.1,
∞∑

n=0

(−1)n(q3; q3)n

(q; q)2n+1
qn(n+1)/2 =

∞∑
n=0

n≡0 (mod 3)

qn(n+1) −
∞∑

n=0
n≡2 (mod 3)

qn(n+1)

=
∞∑

n=0

q9n2+3n −
∞∑

n=0

q9n2+15n+6

=
∞∑

n=0

q9n2+3n −
−∞∑

j=−1

q9j2+3j

= f(q12, q6),

where in the antepenultimate line we set n = −j − 1. ��

Entry 5.4.3 (p. 4). Formally,
(

1 +
1
a

) ∞∑
n=0

(−1)n(−aq; q)n(−q/a; q)n

(q; q2)n+1
=

1
2

∞∑
n=0

(−1)n(an +a−n−1)qn(n+1)/2.

(5.4.6)

As in the case of Entry 5.3.10, the left-hand side of (5.4.6) does not con-
verge for any value of q. We show that the left-hand side of (5.2.4) reduces
term by term to the left-hand side of (5.4.6).

Proof. Setting x = 1/a in (5.2.4), we see that
(

1 +
1
a

) ∞∑
n=0

(−1)n(−aq; q)n(−q/a; q)n

(q; q2)n+1

= lim
ρ1→q

ρ2→−q

∞∑
n=0

(−1/a)n+1(−aq)n(ρ1)n(ρ2)n

(q)2n+1

(
q2

ρ1ρ2

)n

= lim
ρ1→q

ρ2→−q

(q2/ρ1)∞(q2/ρ2)∞
(q)∞(q2/(ρ1ρ2))∞

×
∞∑

n=0

(ρ1)n(ρ2)n

(q2/ρ1)n(q2/ρ2)n
(a−n−1 + an)

(
q2

ρ1ρ2

)n

qn(n+1)/2

=
1
2

∞∑
n=0

(−1)n(an + a−n−1)qn(n+1)/2.

��

Entry 5.4.4 (p. 15). For a �= 0,
(

1 +
1
a

) ∞∑
n=0

(aq; q2)n(q/a; q2)n

(−q; q)2n+1
qn =

∞∑
n=0

(−1)n(an + a−n−1)qn2+n. (5.4.7)
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While this entry is certainly appropriate to this section, we have not found
a proof that is a direct corollary of the identities in Section 5.2.

Proof. In (1.7.3), set n = 2N , a = 1, and replace q by q2. Then set b =
aq−2N+1 and replace the index of summation by N − j. This yields, after
enormous simplification,

(aq; q2)N (a−1q; q2)N =
∞∑

j=−∞

[
2N

N − j

]
q2

(−1)ja−jqj2

=
∞∑

j=−∞

[
2N

N − j

]
q2

(−1)jajqj2
, (5.4.8)

where in the last step we replaced j by −j and used the symmetry of the
q-binomial coefficients. Hence, using (5.4.8) and the q-analogue of Pascal’s
formula for binomial coefficients, we find that

S :=
(

1 +
1
a

) ∞∑
n=0

(aq; q2)n(q/a; q2)n

(−q; q)2n+1
qn

=
(

1 +
1
a

) ∞∑
n=0

qn

(−q; q)2n+1

∞∑
j=−∞

[
2n

n − j

]
q2

(−1)jajqj2

=
∞∑

n=0

qn

(−q; q)2n+1

⎛
⎝ ∞∑

j=−∞

[
2n

n − j

]
q2

(−1)jajqj2

−
∞∑

j=−∞

[
2n

n − j − 1

]
q2

(−1)jajq(j+1)2

⎞
⎠

=
∞∑

j=−∞
(−1)jajqj2

∞∑
n=0

qn

(−q; q)2n+1

([
2n

n − j

]
q2

− q2j+1

[
2n

n − j − 1

]
q2

)
.

(5.4.9)

We first examine the inner sum on the far right side of (5.4.9) for j ≥ 0.
To that end,

∞∑
n=0

qn

(−q; q)2n+1

([
2n

n − j

]
q2

− q2j+1

[
2n

n − j − 1

]
q2

)

=
∞∑

n=0

qn

(−q; q)2n+1

(q2; q2)2n

(
(1 − q2n+2j+2) − q2j+1(1 − q2n−2j)

)
(q2; q2)n−j(q2; q2)n+j+1

=
∞∑

n=0

(q2; q2)2n(1 + q2n+1)(1 − q2j+1)
(−q; q)2n+1(q2; q2)n−j(q2; q2)n+j+1

qn

= (1 − q2j+1)
∞∑

n=0

(q; q)2n

(q2; q2)n−j(q2; q2)n+j+1
qn
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= (1 − q2j+1)
∞∑

n=0

(q; q)2n+2j

(q2; q2)n(q2; q2)n+2j+1
qn+j

=
(q; q)2j+1q

j

(q2; q2)2j+1

∞∑
n=0

(q2j+1; q2)n(q2j+2; q2)n

(q2; q2)n(q4j+4; q2)n
qn

=
(q; q)2j+1q

j

(q2; q2)2j+1

(q2j+3; q2)∞(q2j+2; q2)∞
(q4j+4; q2)∞(q; q2)∞

=
(q; q)∞qj

(q; q)∞
= qj , (5.4.10)

where in the antepenultimate line we applied (1.2.9) with q replaced by q2, and
then set a = q2j+1, b = q2j+2, c = q4j+4, and t = q. Thus, the contribution of
(5.4.10) to the sum S of (5.4.9), i.e., the terms for j ≥ 0, is equal to

∞∑
j=0

(−1)jajqj2+j , (5.4.11)

which indeed does give us part of the right-hand side of (5.4.7).
Now if we replace a by a−1 in the left-hand side of (5.4.7) and then multiply

by a−1, we see that the left-hand side of (5.4.7) is invariant. Consequently,
the coefficient of a−j−1 on the right-hand side of (5.4.7) is the same as the
coefficient of aj . Hence, using (5.4.11) and the observation that we just made
in (5.4.9), we conclude that

S =
(

1 +
1
a

) ∞∑
n=0

(aq; q2)n(q/a; q2)n

(−q; q)2n+1
qn =

∞∑
j=0

(−1)j(aj + a−j−1)qj2+j ,

as desired. ��

If we divide both sides of (5.4.7) by (1 + 1/a) and let a → −1, we deduce
the identity

∞∑
n=0

(−q; q2)nqn

(−q2; q2)n(1 + q2n+1)
=

∞∑
j=0

(2j + 1)qj2+j ,

which should be compared with Jacobi’s identity

(q2; q2)3∞ =
∞∑

j=0

(−1)j(2j + 1)qj2+j .
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Partial Theta Functions

6.1 Introduction

In the lost notebook we find a number of identities involving sums of the form
∞∑

n=0

znqAn2+Bn. (6.1.1)

Inasmuch as this sum consists of the terms with positive index taken from the
classical Jacobi theta function

∞∑
n=−∞

znqAn2+Bn = (−zqA+B ; q2A)∞(−qA−B/z; q2A)∞(q2A; q2A)∞, (6.1.2)

we have chosen to name the series in (6.1.1) partial theta functions. We have
chosen the designation partial theta functions, in contrast with L.J. Rogers’s
“false theta functions” discussed in Chapters 9 and 11 of our first volume [31,
pp. 227–239, 256–259]. The false theta functions are instances of the full series
in (6.1.2) with z specialized to ±qa for some real number a but with a sign
pattern inconsistent with a specialization of (6.1.2). In general, then, partial
theta functions are not the same as false theta functions; however, most false
theta functions are a sum of two specializations of partial theta functions.
Formulas such as those in Entry 6.5.1 might be regarded purely as false theta
function identities; however, their proofs rely on earlier results in this chapter.
Consequently, it is natural to include them here.

The majority of results in this chapter first appeared in [21] and [28]. Sub-
sequently, R.P. Agarwal [4] made a major contribution in placing the main
lemma in [21] within the standard hierarchy of the theory of q-hypergeometric
series. Most recently, S.O. Warnaar [273] has discovered a truly beautiful iden-
tity connecting the sum of two independent partial theta functions. Warnaar’s
work elucidates some of the more recondite partial theta function identities.

As in other chapters, such as Chapter 9 of [31] on the Rogers–Fine identity,
we need central theorems, such as Theorem 6.2.1 in Section 6.2 and Warnaar’s

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 7, c© Springer Science+Business Media, LLC 2009
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theorem in Section 6.6, which are not stated by Ramanujan but which yield
most of the results in this chapter. After proving Theorem 6.2.1 in Section 6.2,
we devote Section 6.3 to deducing results on partial theta functions. Section
6.4 is devoted to the examination of several entries on a particular partial
theta function. Various extensions of Euler’s identity are the focus of Section
6.5. In Section 6.6, we prove an expansion theorem for the product of partial
theta functions [38], and from this result we deduce Warnaar’s theorem. We
then consider implications of Warnaar’s theorem. Finally, after all of these
developments, there remains one recalcitrant formula of Ramanujan, which is
proved in Section 6.6.

6.2 A General Identity

After [21] appeared with its laborious proof of a central lemma, Agarwal
[4] showed how the result is implied by one of D.B. Sears’s three-term 3φ2

relations [256]. We follow Agarwal’s elegant account.

Theorem 6.2.1. For any parameters A, B, a �= 0, and b,

∞∑
n=0

(B)n(−Abq)n

(−aq)n(−bq)n
qn = − (B)∞(−Abq)∞

a(−aq)∞(−bq)∞

∞∑
m=0

(1/A)m

(−B/a)m+1

(
Abq

a

)m

+ (1 + b)
∞∑

m=0

(−1/a)m+1(−ABq/a)m

(−B/a)m+1(Abq/a)m+1
(−b)m.

Proof. The relevant identity of Sears [256, p. 173, equations II(a)–(c)] is given
by

(e)∞(f)∞

(
ef

abc

)
∞

∞∑
n=0

(a)n(b)n(c)n

(q)n(e)n(f)n

(
ef

abc

)n

=
(b)∞(e/a)∞(f/a)∞(ef/(bc))∞

(b/a)∞

∞∑
n=0

(e/b)n(f/b)n(a)n

(q)n(aq/b)n(ef/(bc))n
qn

+
(a)∞(e/b)∞(f/b)∞(ef/(ac))∞

(a/b)∞

∞∑
n=0

(e/a)n(f/a)n(b)n

(q)n(bq/a)n(ef/(ac))n
qn.

Replacing a by q, we deduce that, after simplification,

(1 − b/q)(1 − ef/(bcq))
(1 − e/q)(1 − f/q)

∞∑
n=0

(b)n(c)n

(e)n(f)n

(
ef

bcq

)n

=
∞∑

n=0

(e/b)n(f/b)n

(q2/b)n(ef/(bc))n
qn

+
(1 − b/q)(e/b)∞(f/b)∞(q)∞(ef/(cq))∞

(ef/(bc))∞(e/q)∞(f/q)∞(q/b)∞

∞∑
n=0

(e/q)n(f/q)n

(q)n(ef/(cq))n
qn
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=
∞∑

n=0

(e/b)n(f/b)n

(q2/b)n(ef/(bc))n
qn

+
(1 − b/q)(e/b)∞(f/b)∞(e)∞
(ef/(bc))∞(e/q)∞(q/b)∞

∞∑
n=0

(e/c)n

(e)n

(
f

q

)n

,

where we have transformed the second sum on the right-hand side using
Heine’s transformation (1.1.3). Now replace b by −q/a, and then replace f
by Abq2/a, e by −Bq/a, and c by −ABq/a. Theorem 6.2.1 now follows. ��

6.3 Consequences of Theorem 6.2.1

Entry 6.3.1 (p. 40). We have, for a �= 0 and any number b,
∞∑

n=0

qn

(−aq)n(−bq)n
=

1
(−aq)∞(−bq)∞

∞∑
m=0

(−1)m+1a−m−1bmqm(m+1)/2

+
(

1 +
1
a

) ∞∑
m=0

(−1)ma−mbmqm(m+1)/2

(−bq)m
.

Proof. In Theorem 6.2.1, set A = B = 0. This yields
∞∑

n=0

qn

(−aq)n(−bq)n
=

1
(−aq)∞(−bq)∞

∞∑
m=0

(−1)m+1a−m−1bmqm(m+1)/2

+ (1 + b)
∞∑

m=0

(−1/a)m+1(−b)m

=
1

(−aq)∞(−bq)∞

∞∑
m=0

(−1)m+1a−m−1bmqm(m+1)/2

+
(

1 +
1
a

) ∞∑
m=0

(−1)ma−mbmqm(m+1)/2

(−bq)m
,

where we applied (1.2.9) with a, b, and t replaced by −q/a, q, and −b, respec-
tively, and then let c → 0. ��

B. Kim [189] provided a beautiful bijective proof of Entry 6.3.1 and so
successfully solved a problem posed by I. Pak [226].

Entry 6.3.2 (p. 37). For a �= 0,
∞∑

n=0

qn

(−aq)n(−q/a)n
= (1 + a)

∞∑
n=0

a3nqn(3n+1)/2(1 − a2q2n+1)

− 1
(−aq)∞(−q/a)∞

∞∑
n=0

(−1)na2n+1qn(n+1)/2.
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Proof. In Entry 6.3.1, replace a by 1/a and then replace b by a to find that
∞∑

n=0

qn

(−aq)n(−q/a)n
= − 1

(−aq)∞(−q/a)∞

∞∑
n=0

(−1)na2n+1qn(n+1)/2

+ (1 + a)
∞∑

m=0

(−1)ma2mqm(m+1)/2

(−aq)m

= − 1
(−aq)∞(−q/a)∞

∞∑
n=0

(−1)na2n+1qn(n+1)/2

+ (1 + a)
∞∑

n=0

a3nqn(3n+1)/2(1 − a2q2n+1),

by Entry 9.4.1 of [31]. ��
Entry 6.3.3 (p. 40). For ab �= 0,(

1 +
1
b

) ∞∑
n=0

(−1)nanb−nqn(n+1)/2

(−aq)n
−
(

1 +
1
a

) ∞∑
n=0

(−1)na−nbnqn(n+1)/2

(−bq)n

=
(

1
b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
.

Proof. Subtract Entry 6.3.1 from Entry 6.3.1 with a and b interchanged.
Consequently,

0 =
(

1 +
1
b

) ∞∑
n=0

(−1)nanb−nqn(n+1)/2

(−aq)n
−
(

1 +
1
a

) ∞∑
n=0

(−1)na−nbnqn(n+1)/2

(−bq)n

− 1
(−aq)∞(−bq)∞

∞∑
n=0

(−1)n
(
anb−n−1 − a−n−1bn

)
qn(n+1)/2

=
(

1 +
1
b

) ∞∑
n=0

(−1)nanb−nqn(n+1)/2

(−aq)n
−
(

1 +
1
a

) ∞∑
n=0

(−1)na−nbnqn(n+1)/2

(−bq)n

− 1
(−aq)∞(−bq)∞

∞∑
n=−∞

(−1)nanb−n−1qn(n+1)/2.

Now from (1.4.8),
∞∑

n=−∞
(−1)nanb−n−1qn(n+1)/2 =

1
b
f(−aq/b,−b/a)

=
1
b
(aq/b)∞(b/a)∞(q)∞

=
1
b

(
1 − b

a

)
(aq/b)∞(bq/a)∞(q)∞

=
(

1
b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞.
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Thus, using this last representation in the foregoing identity, we deduce that

0 =
(

1 +
1
b

) ∞∑
n=0

(−1)nanb−nqn(n+1)/2

(−aq)n
−
(

1 +
1
a

) ∞∑
n=0

(−1)na−nbnqn(n+1)/2

(−bq)n

−
(

1
b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
.

This is equivalent to the desired result. ��

Early in the twenty-first century, several further proofs of Entry 6.3.3 were
independently given, sometimes without knowledge that the theorem can be
found in the lost notebook. D.D. Somashekara and S.N. Fathima [264] used
Ramanujan’s 1ψ1 summation theorem and Heine’s transformation to establish
an equivalent version of Entry 6.3.3. S. Bhargava, Somashekara, and Fathima
[83] provided another proof, which is a slight variation of that in [264]. Pro-
ceeding from scratch and using the q-binomial theorem, T. Kim, Somashekara,
and Fathima [193] gave a much different proof of Entry 6.3.3. P.S. Guruprasad
and N. Pradeep [170] also devised a proof using the q-binomial theorem.
C. Adiga and N. Anitha [2] devised a proof of Entry 6.3.3 along the lines of
M.E.H. Ismail’s proof [184] of Ramanujan’s 1ψ1 summation formula. Berndt,
S.H. Chan, B.P. Yeap, and A.J. Yee [71] found three proofs of Entry 6.3.3.
Their first, using the second iterate of Heine’s transformation and the 1ψ1

summation theorem, is similar to that of Somashekara and Fathima [264].
Their second employs the Rogers–Fine identity. Their third is combinatorial
and so completely different from other proofs. As a corollary of their work,
they derive a two-variable generalization of the quintuple product identity.

S.-Y. Kang [188] constructed a proof of Entry 6.3.3 along the lines of
K. Venkatachaliengar’s proof of the Ramanujan 1ψ1 summation formula [3],
[54, 32–34]. She also obtained a four-variable generalization of Entry 6.3.3 and
a four-variable generalization of the quintuple product identity.

Theorem 6.3.1. Suppose that ab �= 0 and that c and d are any parameters,
except that c, d �= −aq−n,−bq−n, for any positive integer n. Let

ρ4(a, b; c; d) :=
(

1 +
1
b

) ∞∑
n=0

(−1)n(d, c, cd/(ab))n(1 + cdq2n/b)anb−nqn(n+1)/2

(−aq)n(−c/b,−d/b)n+1
.

Then

ρ4(a, b; c; d)− ρ4(a, b; d; c) =
(

1
b
− 1

a

)
(c, d, cd/(ab), aq/b, bq/a, q)∞

(−d/a,−d/b,−c/a,−c/b,−aq,−bq)∞
.

Note that if c = d = 0, Theorem 6.3.1 reduces to Entry 6.3.3.
Z. Zhang [290] also found a three-variable generalization of Entry 6.3.3. An

earlier attempt [289] to generalize Entry 6.3.3 evidently contained a mistake.
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Theorem 6.3.2. If a and b are not equal to 0, and aq, adq, bq, bdq �= −q−n,
n ≥ 0, then

(
1 +

1
b

)
(1 + bd)

∞∑
n=0

(−1)n(abd)nanb−nqn(n+1)/2

(−aq,−adq)n

−
(

1 +
1
a

)
(1 + ad)

∞∑
n=0

(−1)n(abd)na−nbnqn(n+1)/2

(−bq,−bdq)n

=
(

1
b
− 1

a

)
(aq/b, bq/a, abd, q)∞

(−aq,−bq,−adq,−bdq)∞
.

Z.-G. Liu [205] has also generalized Entry 6.3.3 in the following theorem.

Theorem 6.3.3.

d
∞∑

n=0

(q/bc, acdf ; q)n

(ad, df ; q)n+1
(bd)n − c

∞∑
n=0

(q/bd, acdf ; q)n

(ac, cf ; q)n+1
(bc)n

=
(q, qd/c, c/d, abcd, acdf, bcdf ; q)∞

(ac, ad, cf, df, bc, bd; q)∞
. (6.3.1)

If we set b = f = 0 in (6.3.1), we deduce Entry 6.3.3. Taking b = 0, we obtain
Zhang’s extension in Theorem 6.3.2.

Lastly, we remark that W. Chu and W. Zhang [130] have not only extended
the results of Kang, but they have even extended Andrews’s original result
[21, Theorem 6] as well.

Although we have mentioned only a few applications of Entry 6.3.3 and the
two generalizations recorded above, all of the papers that we have cited contain
applications of the main theorems. In particular, some offer applications to
sums of squares.

Entry 6.3.4 (p. 37). If a �= 0, then

∞∑
n=0

q2n+1

(−aq; q2)n+1(−q/a; q2)n+1
=

∞∑
n=0

a3n+1q3n2+2n(1 − aq2n+1)

− 1
(−aq; q2)∞(−q/a; q2)∞

∞∑
n=0

(−1)na2n+1qn(n+1).

Proof. In Theorem 6.2.1, replace q by q2, then set A = B = 0, and finally
replace a and b by q/a and aq, respectively. Upon multiplying both sides of
the result by q(1 + aq)−1(1 + q/a)−1, we find that

∞∑
n=0

q2n+1

(−aq; q2)n+1(−q/a; q2)n+1

= − 1
(−aq; q2)∞(−q/a; q2)∞

∞∑
n=0

(−1)na2n+1qn(n+1)
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+ a

∞∑
m=0

(−aq; q2)m(−aq)m. (6.3.2)

To conclude this proof, we apply (1.2.9) with q replaced by q2, and then with
a, b, and t replaced by −aq, q2, and −aq, respectively. Then we let c tend to
0. Accordingly,

a

∞∑
m=0

(−aq; q2)m(−aq)m =
∞∑

m=0

(−1)ma2m+1qm(m+1)

(−aq; q2)m+1

=
∞∑

n=0

a3n+1q3n2+2n(1 − aq2n+1),

by Entry 9.5.1 of [31]. Using the identity above in (6.3.2), we complete the
proof. ��

Entry 6.3.5 (p. 5). For any complex number a,

∞∑
n=0

(aq; q2)nqn

(−q; q)n
= 2

∞∑
n=0

(−1)nanqn(n+1)

− (q; q2)∞(aq; q2)∞
∞∑

n=0

(−1)nanqn(n+1)

(aq; q2)n+1
.

Proof. We begin by applying (1.2.5) to the left-hand side of this entry with
t = q, a replaced by aq, b = q, and c = 0. Hence, after simplification,

∞∑
n=0

(aq; q2)nqn

(−q; q)n
= (q2; q2)∞(aq2; q2)∞

∞∑
m=0

q2m

(q2; q2)m(aq; q2)m
(6.3.3)

+ (q; q2)∞(aq3; q2)∞
∞∑

m=0

q2m+1

(q; q2)m+1(aq3; q2)m
.

Now by (1.7.6) with q replaced by q2, we see that the first expression on the
right-hand side of (6.3.3) has the representation

(q2; q2)∞(aq2; q2)∞
∞∑

m=0

q2m

(q2; q2)m(aq; q2)m
=

∞∑
n=0

(−1)nanqn(n+1).

Consequently, to conclude the proof of this entry, we must show that

(q; q2)∞(aq3; q2)∞
∞∑

m=0

q2m+1

(q; q2)m+1(aq3; q2)m
(6.3.4)

=
∞∑

n=0

(−1)nanqn(n+1) − (q; q2)∞(aq; q2)∞
∞∑

n=0

(−1)nanqn(n+1)

(aq; q2)n+1
.
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But this last assertion follows immediately from Entry 6.3.1, as we now demon-
strate. Replace q by q2, replace a by −q, and then set b = −aq. Multiply both
sides of the resulting identity by q(q3; q2)∞(aq3; q2)∞ and simplify to deduce
(6.3.4). ��

Entry 6.3.6 (p. 8). If a �= 0 and f(a, b) is defined by (1.4.8), then

(
1 +

1
a

) ∞∑
n=0

(q; q2)nq2n+1

(−aq; q2)n+1(−q/a; q2)n+1

=
∞∑

n=0

(−1)nanqn(n+1)/2 − (q; q)∞
f(aq, q/a)

∞∑
n=0

a3nq3n2+n(1 − a2q4n+2).

Proof. In Theorem 6.2.1, replace q by q2 and then a by q/a; then set B = 0,
b = aq, and A = −a−1q−2; and lastly multiply the resulting identity by
q(1 + 1/a)(1 + aq)−1(1 + q/a)−1. Consequently,
(

1 +
1
a

) ∞∑
n=0

(q; q2)nq2n+1

(−aq; q2)n+1(−q/a; q2)n+1

= − (q; q2)∞
(−aq; q2)∞(−q/a; q2)∞

∞∑
m=0

(−a; q2)m+1(−a)m +
∞∑

m=0

(−aq; q2)m(−aq)m

(−aq2; q2)m

= − (q; q)∞
f(aq, q/a)

∞∑
m=0

(−a; q2)m+1(−a)m +
∞∑

m=0

(−aq; q2)m(−aq)m

(−aq2; q2)m
,

where we applied the Jacobi triple product identity (1.4.8).
Thus, to complete the proof of the entry, we must show that

∞∑
m=0

(−aq; q2)m(−aq)m

(−aq2; q2)m
=

∞∑
n=0

(−1)nanqn(n+1)/2 (6.3.5)

and
∞∑

m=0

(−a; q2)m+1(−a)m =
∞∑

n=0

a3nq3n2+n(1 − a2q4n+2). (6.3.6)

To prove (6.3.5), invoke (1.7.1) with q replaced by q2, and α = −aq, β = −aq2,
and τ = −aq to find that

∞∑
m=0

(−aq; q2)m(−aq)m

(−aq2; q2)m
=

∞∑
n=0

a2nq2n2+n(1 − aq2n+1)

=
∞∑

n=0

(−1)nanqn(n+1)/2.

To prove (6.3.6), apply (1.7.1) with q replaced by q2 and α = −aq2, β = 0, and
τ = −a, and lastly multiply both sides of the resulting identity by (1+a). ��
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Entry 6.3.7 (p. 2). Recall that f(a, b) and ψ(q) are defined by (1.4.8) and
(1.4.10), respectively. Then, for any complex number a �= 0,

(
1 +

1
a

) ∞∑
n=0

(−q; q)2nq2n+1

(aq; q2)n+1(q/a; q2)n+1

=
ψ(q)

f(−aq,−q/a)

∞∑
n=0

(−a)nqn(n+1)/2 −
∞∑

n=0

(−a)nqn(n+1).

Proof. In Theorem 6.2.1, replace q by q2 and then a by −q/a; then set B =
−q, b = −aq, and A = −a−1q−1; and finally multiply both sides of the result
by (1 + 1/a)q(1 − aq)−1(1 − q/a)−1. Consequently,

(
1 +

1
a

) ∞∑
n=0

(−q; q)2nq2n+1

(aq; q2)n+1(q/a; q2)n+1

=
(1 + a)(−q; q)∞

(aq; q2)∞(q/a; q2)∞

∞∑
m=0

(−aq; q2)m(−aq)m

(−a; q2)m+1

−
∞∑

m=0

(aq; q2)m(q; q2)m(aq)m

(−aq2; q2)m(−aq; q2)m+1
.

By (6.3.5), we see that the first expression on the right-hand side of this latter
result is equal to

(q2; q2)∞
(q; q2)∞(q2; q2)∞(aq; q2)∞(q/a; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

=
ψ(q)

f(−aq,−q/a)

∞∑
n=0

(−a)nqn(n+1)/2,

by (1.4.10) and the triple product identity (1.4.8). Therefore, to complete the
proof of this entry, we must show that

S :=
∞∑

m=0

(aq; q2)m(q; q2)m(aq)m

(−aq2; q2)m(−aq; q2)m+1
=

∞∑
n=0

(−a)nqn(n+1). (6.3.7)

Now apply (1.2.1) with k = 2, with a replaced by aq, and then with b = q,
c = −aq2, and t = aq. Thus,

S =
1

1 + aq

∞∑
m=0

(aq; q2)m(q; q)2m(aq)m

(q2; q2)m(−aq2; q)2m

=
(q; q)∞(a2q2; q2)∞
(−aq; q)∞(aq; q2)∞

∞∑
m=0

(−aq; q)m(aq; q2)mqm

(q; q)m(a2q2; q2)m

= (q; q)∞(aq2; q2)∞
∞∑

m=0

(
√

aq; q)m(−√
aq; q)mqm

(q; q)m(aq; q)m
.
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We apply (1.2.1) once again, but now with a, b, and c replaced by −√
aq,√

aq, and aq, respectively, and with t = q. Multiplying both the numerator
and denominator by 1 +

√
aq, we find that

S =
(q; q)∞(aq2; q2)∞(aq; q2)∞

(aq; q)∞(q; q)∞

∞∑
m=0

(
√

aq; q)m(aq)m/2

(−√
aq; q)m+1

=
∞∑

n=0

(−a)nqn(n+1),

where we applied (1.7.1) with α = −√
aq, β = q

√
aq, and τ =

√
aq. Hence,

(6.3.7) has been demonstrated, and so the proof of Entry 6.3.7 is complete.
��

Entry 6.3.8 (pp. 7, 13). We have

∞∑
n=0

(−q; q)2nq2n+1

(q; q2)2n+1

=
1

2(q; q2)3∞

∞∑
n=0

(−1)nqn(n+1)/2 − 1
2

∞∑
n=0

(−1)nqn(n+1).

Proof. Set a = 1 in Entry 6.3.7 and note that

ψ(q)
f(−q,−q)

=
ψ(q)

ϕ(−q)
=

(q2; q2)∞(−q; q)∞
(q; q2)∞(q; q)∞

=
1

(q; q2)3∞
,

by Euler’s identity. The desired result now follows. ��

Entry 6.3.9 (p. 29). For a �= 0,

∞∑
n=0

(q; q2)nq2n

(−aq2; q2)n(−q2/a; q2)n
= (1 + a)

∞∑
n=0

(−a)nqn(n+1)/2

− a(q; q2)∞
(−aq2; q2)∞(−q2/a; q2)∞

∞∑
n=0

a3nq3n2+2n(1 − aq2n+1).

Proof. In Theorem 6.2.1, replace q by q2 and a by 1/a. Then set A =
−a−1q−1, B = 0, and b = a. Consequently,

∞∑
n=0

(q; q2)nq2n

(−aq2; q2)n(−q2/a; q2)n

= − a(q; q2)∞
(−aq2; q2)∞(−q2/a; q2)∞

∞∑
n=0

(−aq; q2)m(−aq)m

+ (1 + a)
∞∑

m=0

(−a; q2)m+1(−a)m

(−aq; q2)m+1
.

To complete the proof of Entry 6.3.9, we must show that
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∞∑
m=0

(−aq; q2)m(−aq)m =
∞∑

n=0

a3nq3n2+2n(1 − aq2n+1) (6.3.8)

and ∞∑
m=0

(−a; q2)m+1(−a)m

(−aq; q2)m+1
=

∞∑
n=0

(−a)nqn(n+1)/2. (6.3.9)

To prove (6.3.8), apply (1.7.1) with q replaced by q2 and then with α = −aq
and τ = −aq. Letting β → 0, we deduce (6.3.8). Invoke (1.7.1) once again,
but now with α = −aq2, β = −aq3, and τ = −a. Multiplying both sides by
(1 + a)/(1 + aq), we find that

∞∑
m=0

(−a; q2)m+1(−a)m

(−aq; q2)m+1
=

∞∑
n=0

a2nq2n2+n(1 − aq2n+1)

=
∞∑

n=0

(−a)nqn(n+1)/2.

Thus, (6.3.9) has been shown, and hence the proof of Entry 6.3.9 is complete.
��

Entry 6.3.10 (p. 29). We have

∞∑
n=0

(−q; q2)nq2n

(−q4; q4)n
=

∞∑
n=0

(−1)nqn(n+1)/2

+
qψ(q)

(q8; q8)∞

∞∑
n=0

(−1)nq12n2+8n(1 + q8n+4).

Proof. In Entry 6.3.9, assume that q is real and replace q by −q. Setting
a = i, we find that

∞∑
n=0

(−q; q2)nq2n

(−q4; q4)n
= Re

{
(1 + i)

∞∑
n=0

(−i)n(−q)n(n+1)/2 (6.3.10)

− i(−q; q2)∞
(−q4; q4)∞

∞∑
n=0

i3n(−q)3n2+2n(1 + iq2n+1)

}
.

First,

Re

{
(1 + i)

∞∑
n=0

(−i)n(−q)n(n+1)/2

}
=

∞∑
n=0

qn(2n+1) −
∞∑

n=0

q(n+1)(2n+1)

=
∞∑

n=0

(−1)nqn(n+1)/2. (6.3.11)

Second,
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Re

{ ∞∑
n=0

i3n+1(−q)3n2+2n(1 + iq2n+1)

}

= −
∞∑

n=0

(−1)nq3(2n+1)2+2(2n+1) −
∞∑

n=0

(−1)nq3(2n)2+4(2n)+1

= −q
∞∑

n=0

(−1)nq12n2+8n(1 + q8n+4). (6.3.12)

Substituting (6.3.11) and (6.3.12) into (6.3.10), we complete the proof after
observing that

(−q; q2)∞
(−q4; q4)∞

=
(q2; q4)∞(q4; q4)∞
(q8; q8)∞(q; q2)∞

=
(q2; q2)∞

(q8; q8)∞(q; q2)∞
=

ψ(q)
(q8; q8)∞

,

by (1.4.10). ��

Entry 6.3.11 (p. 4). For a �= 0,

∞∑
n=0

(q; q2)nqn

(−aq; q)n(−q/a; q)n
= (1 + a)

∞∑
n=0

(−a)nqn(n+1)/2

− a(q; q2)∞
(−aq; q)∞(−q/a; q)∞

∞∑
n=0

(−1)na2nqn(n+1).

Proof. For ease of notation, we shall prove the identity above with q replaced
by q2, in which case it may be rewritten as

∞∑
n=0

(q; q2)n(−q; q2)nq2n

(−aq2; q2)n(−q2/a; q2)n
= (1 + a)

∞∑
n=0

(−a)nqn(n+1)

− a(q; q2)∞(−q; q2)∞
(−aq2; q2)∞(−q2/a; q2)∞

∞∑
n=0

(−1)na2nq2n(n+1).

Now in Theorem 6.2.1, replace q by q2, a by 1/a, and b by a. Then set B = q
and A = a−1q−1. Thus,

∞∑
n=0

(q; q2)n(−q; q2)nq2n

(−aq2; q2)n(−q2/a; q2)n

= − a(q; q2)∞(−q; q2)∞
(−aq2; q2)∞(−q2/a; q2)∞

∞∑
m=0

(aq; q2)m(aq)m

(−aq; q2)m+1

+ (1 + a)
∞∑

m=0

(−a; q2)m+1(−q2; q2)m(−a)m

(−aq; q2)m+1(aq; q2)m+1
. (6.3.13)
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Apply (1.7.1) with q replaced by q2, and then with α = aq, β = −aq3, and
τ = aq. After dividing both sides of the resulting identity by (1+aq), we find
that ∞∑

m=0

(aq; q2)m(aq)m

(−aq; q2)m+1
=

∞∑
n=0

(−1)na2nq2n(n+1). (6.3.14)

Next, invoke (1.2.1) with h = 2, q replaced by q2, and a, b, c, and t replaced
by a2q2, −a, a2q2, and q4, respectively, to deduce that

S :=
∞∑

m=0

(−a; q2)m+1(−q2; q2)m(−a)m

(−aq; q2)m+1(aq; q2)m+1

=
1 + a

1 − a2q2

∞∑
m=0

(−aq2; q2)m(q4; q4)m(−a)m

(q2; q2)m(a2q6; q4)m

=
(1 + a)(a2q2; q2)∞(q4; q4)∞

(1 − a2q2)(−a; q2)∞(a2q6; q4)∞

∞∑
n=0

(a2q2; q4)n(−a; q2)2nq4n

(q4; q4)n(a2q2; q2)2n

= (aq2; q2)∞(q4; q4)∞
∞∑

n=0

(−a; q4)n(−aq2; q4)nq4n

(q4; q4)n(a2q4; q4)n
. (6.3.15)

To the far right side of (6.3.15), we apply (1.2.1) with q replaced by q4, h = 1,
and a replaced by −a. After this, we set b = −aq2, c = a2q4, and t = q4 to
finally arrive at

S = (aq2; q2)∞(q4; q4)∞
(−aq2; q4)∞(−aq4; q4)∞

(a2q4; q4)∞(q4; q4)∞

∞∑
n=0

(−aq2; q4)n(−aq2)n

(−aq4; q4)n

=
∞∑

n=0

a2nq4n2+2n(1 − aq4n+2)

=
∞∑

n=0

(−a)nqn(n+1), (6.3.16)

where in the penultimate line we applied (1.7.1) with q replaced by q4, α by
−aq2, β by −aq4, and τ by −aq2.

Substituting (6.3.14) and (6.3.16) into (6.3.13), we complete the proof of
Entry 6.3.11. ��

Entry 6.3.12 (p. 1). If a, b, and c �= 0 are complex, then

∞∑
n=0

(−aq)n(−bq)nqn+1

(−cq)n
=

∞∑
n=1

(−1/c)n(ab/c)n−1qn(n+1)/2

(aq/c)n(bq/c)n

− (−aq)∞(−bq)∞
c(−cq)∞

∞∑
n=1

(ab/c2)n−1qn2

(aq/c)n(bq/c)n
.
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Proof. In Theorem 6.2.1, replace B by −Bq and A by A/b. Then let b → 0
to deduce that

∞∑
n=0

(−Bq)n(−Aq)nqn

(−aq)n
= − (−Bq)∞(−Aq)∞

a(−aq)∞

∞∑
m=0

(Aq/a)m

(Bq/a)m+1

+
∞∑

m=0

(−1/a)m+1(AB/a)mqm(m+3)/2

(Bq/a)m+1(Aq/a)m+1
. (6.3.17)

Next, in (2.1.1), replace a, b, c, d, and e by q, 1/τ , 1/τ , Bq2/a, and
Aq2/a, respectively, and then let τ → 0. After multiplying both sides by
(1 − Bq/a)−1(1 − Aq/a)−1 and simplifying, we find that

∞∑
n=0

(AB/a2)nqn2+2n

(Bq/a)n+1(Aq/a)n+1
=

∞∑
n=0

(Aq/a)n

(Bq/a)n+1
. (6.3.18)

Therefore, we may substitute the left-hand side of (6.3.18) into the first
expression on the right-hand side of (6.3.17). After multiplying both sides of
the resulting identity by q, we arrive at

∞∑
n=0

(−Bq)n(−Aq)nqn+1

(−aq)n
= − (−Bq)∞(−Aq)∞

a(−aq)∞

∞∑
n=1

(AB/a2)n−1qn2

(Bq/a)n(Aq/a)n

+
∞∑

n=1

(−1/a)n(AB/a)n−1qn(n+1)/2

(Bq/a)n(Aq/a)n
,

and this is the desired result upon replacing A, B, and a by a, b, and c,
respectively. ��

Entry 6.3.13 (p. 30). If a �= 0, then

(1 + a)
∞∑

n=0

(−1)n(cq)na−n−1bnqn(n+1)/2

(−cq/a)n+1(−bq)n

=
∞∑

n=0

(cq)nqn

(−aq)n(−bq)n
+

(cq)∞
(−aq)∞(−bq)∞

∞∑
n=0

(−1)na−n−1bnqn(n+1)/2

(−cq/a)n+1
.

Proof. In Theorem 6.2.1, set A = 0 and B = cq. Thus,

∞∑
n=0

(cq)nqn

(−aq)n(−bq)n
= − (cq)∞

(−aq)∞(−bq)∞

∞∑
n=0

(−1)na−n−1bnqn(n+1)/2

(−cq/a)n+1

+ (1 + b)
∞∑

n=0

(−1/a)n+1(−b)n

(−cq/a)n+1
.

To conclude the proof, we must show that
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(1 + b)
∞∑

n=0

(−1/a)n+1(−b)n

(−cq/a)n+1
= (1 + a)

∞∑
n=0

(−1)n(cq)na−n−1bnqn(n+1)/2

(−cq/a)n+1(−bq)n
,

which follows from (2.1.3), after replacing a, b, d, and e by q, cq, −cq2/a, and
−bq, respectively, and then multiplying both sides by (1+1/a)/(1+cq/a). ��
Entry 6.3.14 (p. 3). If a �= 0, then

∞∑
n=0

(−1)n(q; q2)nqn2

(−aq2; q2)n(−q2/a; q2)n
= (1 + a)

∞∑
n=0

(q; q2)nq2n+1

(−aq; q)2n+1

+
(q; q2)∞

(−aq; q)∞

∞∑
n=0

(−1)nqn2

(−q2/a; q2)n
.

Proof. In Entry 6.3.13, replace q by q2, and then replace a, b, and c by aq,
a, and 1/q, respectively. Multiplying both sides of the resulting identity by
q(1 + a)/(1 + aq), we complete the proof. ��
Entry 6.3.15 (p. 29). We have

∞∑
n=0

(q; q)2nq2n

(q6; q6)n
=

3
2

∞∑
n=0

q18n2+3n(1 − q12n+3 + q18n+6 − q30n+15)

− 1
2

(q; q)∞
(q6; q6)∞

∞∑
n=0

(−1)nq3n2+2n(1 + q2n+1).

Proof. In Entry 6.3.13, replace q by q2. Then set c = 1/q, a = −ω, and b =
−ω2, where ω = e2πi/3. Consequently, after simplification and rearrangement,
we find that

∞∑
n=0

(q; q)2nq2n

(q6; q6)n
=

(q; q)∞
ω(q6; q6)∞

∞∑
n=0

(−1)nωnqn(n+1)

(q/ω; q2)n+1

− ω−1(1 − ω)
∞∑

n=0

(−1)n(q; q2)nωnqn2+n

(q/ω; q2)n+1(ω2q2; q2)n
.

In order to conclude the proof of Entry 6.3.15, we may assume that q is
real and we must show that

Re

(
ω−1

∞∑
n=0

(−1)nωnqn(n+1)

(q/ω; q2)n+1

)
= −1

2

∞∑
n=0

(−1)nq3n2+2n(1 + q2n+1) (6.3.19)

and

Re

(
−ω−1(1 − ω)

∞∑
n=0

(−1)n(q; q2)nωnqn(n+1)

(ω2q; q2)n+1(ω2q2; q2)n

)

=
3
2

∞∑
n=0

q18n2+3n
(
1 − q12n+3 + q18n+6 − q30n+15

)
. (6.3.20)



128 6 Partial Theta Functions

First, by Entry 9.5.1 of [31] with a = −ω−1, we see that

ω−1
∞∑

n=0

(−1)nωnqn(n+1)

(q/ω; q2)n+1
= ω−1

∞∑
n=0

(−1)nq3n2+2n(1 + ω−1q2n+1).

Hence, assuming that q is real, we find that

Re

(
ω−1

∞∑
n=0

(−1)nωnqn(n+1)

(q/ω; q2)n+1

)
= −1

2

∞∑
n=0

(−1)nq3n2+2n − 1
2

∞∑
n=0

q3n2+4n+1

= −1
2

∞∑
n=0

(−1)nq3n2+2n(1 + q2n+1),

which establishes (6.3.19).
Secondly, for (6.3.20), we apply (2.1.3) with q replaced by q2, and then

with a, b, d, and e replaced by q2, q, ω2q2, and ω2q3, respectively. Accordingly,
we find that

Re

(
−ω−1(1 − ω)

1 − ω2q

∞∑
n=0

(−1)n(q; q2)nωnqn(n+1)

(ω2q3; q2)n(ω2q2; q2)n

)

= Re

(
(1 − ω−1)

∞∑
n=0

(ω2q; q2)n(ω2q)n

(ω2q2; q2)n

)
.

Next, we apply (1.7.1) to the right-hand side above with q replaced by q2, and
then with α = ω2q, β = ω2q2, and τ = ω2q. Thus,

Re

(
−ω−1(1 − ω)

1 − ω2q

∞∑
n=0

(−1)n(q; q2)nωnqn(n+1)

(ω2q3; q2)n(ω2q2; q2)n

)

= Re

(
(1 − ω−1)

∞∑
n=0

ωnq2n2+n(1 + ω2q2n+1)

)

=
3
2

∞∑
n=0

n≡0 (mod 3)

q2n2+n − 3
2

∞∑
n=0

n≡1 (mod 3)

q2n2+n

+
3
2

∞∑
n=0

n≡1 (mod 3)

q2n2+3n+1 − 3
2

∞∑
n=0

n≡2 (mod 3)

q2n2+3n+1

=
3
2

∞∑
n=0

q18n2+3n
(
1 − q12n+3 + q18n+6 − q30n+15

)
.

Hence, we have demonstrated the truth of (6.3.20), and with it the validity
of Entry 6.3.15. ��
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The final entry in this section is probably the most speculative in this
chapter, because at the bottom of page 4 in his lost notebook, Ramanujan
wrote down only the left-hand side of the following result; no right-hand side
was given by Ramanujan. We think that our interpretation of Ramanujan’s
intention is accurate, because it too is a special case of Theorem 6.2.1. How-
ever, in light of the fact that no partial theta series appears, Ramanujan may
have decided not to write down the complete result.

Entry 6.3.16 (p. 4). We have

∞∑
n=0

(−q2; q4)nq2n+1

(−q; q)2n+1
= 2q

∞∑
n=0

(−1)n(q;−q)2nqn

(−q2; q4)n+1

− q(−q2; q4)∞
(−q; q)∞

∞∑
n=0

(−q4; q4)nq2n2+2n(1 − q4n+3)
(−q2; q4)n+1

.

Proof. In Theorem 6.2.1, replace q by q2 and then set A = −iq−2, B = −iq,
a = 1, and b = q. Finally, multiply both sides by q/(1+q). After simplification,
we find that

∞∑
n=0

(−q2; q4)nq2n+1

(−q; q)2n+1
= −q(−q2; q4)∞

(−q; q)∞

∞∑
n=0

(iq2; q2)n(−iq)n

(iq; q2)n+1

+ 2q

∞∑
n=0

(−1)n(q;−q)2nqn

(−q2; q4)n+1
.

To conclude our proof, we must show that

∞∑
n=0

(iq2; q2)n(−iq)n

(iq; q2)n+1
=

∞∑
n=0

(−q4; q4)nq2n2+2n(1 − q4n+3)
(−q2; q4)n+1

.

However, this last result follows from (1.7.1) by replacing q by q2, then setting
α = iq2, β = iq3, and τ = −iq, and lastly dividing both sides by (1 − iq). ��

6.4 The function ψ(a, q)

In this section, we collect together some results, mostly from page 38 of the
lost notebook, connected with the partial theta function

ψ(a, q) :=
∞∑

n=0

anqn(n+1)/2.

Note that ψ(1, q) = ψ(q). In some ways, these results fit reasonably and
naturally into several other locations in our development. However, they seem
most appealing when exhibited independently.
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Entry 6.4.1 (p. 38). If ω = e2πi/3, then

ψ(a, q) + ωψ(a, ωq) + ω2ψ(a, ω2q) = 0.

Proof. The proposed identity easily follows from the facts that there are no
powers of q congruent to 2 modulo 3 and that for each index of summation n
modulo 3, the sum of the nth terms of the three series is equal to 0, because
the sum of the three cube roots of unity equals 0. ��

Entry 6.4.2 (p. 38). If ω = e2πi/3, then

ψ(a, q) + ω2ψ(a, ωq) + ωψ(a, ω2q) = 3aqψ(a3, q9).

Proof. We have

ψ(a, q) + ω2ψ(a, ωq) + ωψ(a, ω2q) = 3
∞∑

n=0
n(n+1)/2≡1 (mod 3)

anqn(n+1)/2

= 3
∞∑

n=0

a3n+1q(3n+1)(3n+2)/2

= 3aq
∞∑

n=0

a3nq9n(n+1)/2 = 3aqψ(a3, q9).

Thus, the proof is complete. ��

Entry 6.4.3 (p. 38). For any complex number a,

∞∑
n=0

(−1)na2nqn(3n+1)/2

(−aq; q3)n+1
=

1
2

∞∑
n=0

a3nq3n(3n+1)/2(1 − a2q6n+3)

+
1
2
{
ψ(a, q) − 3aqψ(a3, q9)

}
.

Proof. In Entry 9.5.1 of [31], replace q by q3/2 and a by aq−1/2 to deduce
that

∞∑
n=0

(−1)na2nqn(3n+1)/2

(−aq; q3)n+1
=

∞∑
n=0

a3nq3n(3n+1)/2(1 − aq3n+1) (6.4.1)

=
∞∑

n=0
n≡0 (mod 3)

anqn(n+1)/2 −
∞∑

n=0
n≡1 (mod 3)

anqn(n+1)/2.

On the other hand,

1
2

∞∑
n=0

a3nq3n(3n+1)/2(1 − a2q6n+3) +
1
2
{
ψ(a, q) − 3aqψ(a3, q9)

}
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=
1
2

∞∑
n=0

n≡0 (mod 3)

anqn(n+1)/2 − 1
2

∞∑
n=0

n≡2 (mod 3)

anqn(n+1)/2

+
1
2

∞∑
n=0

anqn(n+1)/2 − 3
2

∞∑
n=1

n≡1 (mod 3)

anqn(n+1)/2

=
∞∑

n=0
n≡0 (mod 3)

anqn(n+1)/2 −
∞∑

n=0
n≡1 (mod 3)

anqn(n+1)/2. (6.4.2)

Comparing (6.4.2) and (6.4.1), we see that Entry 6.4.3 has been established.
��

Entry 6.4.4 (p. 38). For each complex number a,
∞∑

n=0

(−1)na2n+1q(n+1)(3n+1)/2

(−aq2; q3)n+1
=

1
2

∞∑
n=0

a3nq3n(3n+1)/2(1 − a2q6n+3)

− 1
2
{
ψ(a, q) − 3aqψ(a3, q9)

}
.

Proof. Replacing a by aq in (6.4.1) and multiplying both sides by aq, we see
that

∞∑
n=0

(−1)na2n+1q(n+1)(3n+1)/2

(−aq2; q3)n+1
=

∞∑
n=0

a3n+1q(3n+1)(3n+2)/2(1 − aq3n+2)

=
∞∑

n=0
n≡1 (mod 3)

anqn(n+1)/2 −
∞∑

n=0
n≡2 (mod 3)

anqn(n+1)/2. (6.4.3)

On the other hand, following the argument used in the proof of Entry 6.4.3,
we find that

1
2

∞∑
n=0

a3nq3n(3n+1)/2(1 − a2q6n+3) − 1
2
{
ψ(a, q) − 3aqψ(a3, q9)

}

=
1
2

∞∑
n=0

n≡0 (mod 3)

anqn(n+1)/2 − 1
2

∞∑
n=0

n≡2 (mod 3)

anqn(n+1)/2

− 1
2

∞∑
n=0

anqn(n+1)/2 +
3
2

∞∑
n=0

n≡1 (mod 3)

anqn(n+1)/2

=
∞∑

n=0
n≡1 (mod 3)

anqn(n+1)/2 −
∞∑

n=0
n≡2 (mod 3)

anqn(n+1)/2. (6.4.4)

Substituting (6.4.4) into (6.4.3), we complete the proof of Entry 6.4.4. ��
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Entry 6.4.5 (p. 39). For any complex number a,

∞∑
n=0

(−1)na2nqn(3n+1)/2

(−aq; q3)n+1
+

∞∑
n=0

(−1)na2n+1q(n+1)(3n+2)/2

(−aq2; q3)n+1

=
∞∑

n=0

a3nq3n(3n+1)/2(1 − a2q6n+3).

Proof. Add together Entries 6.4.3 and 6.4.4. ��

Entry 6.4.6 (p. 4). For a �= 0,

(
1 +

1
a

) ∞∑
n=0

(−1)n(−aq; q)n(−q/a; q)n

(q; q2)n+1
=

1
2

∞∑
n=0

(−1)n(an +a−n−1)qn(n+1)/2.

(6.4.5)

The series on the left-hand side above is not convergent. Thus, we need to
introduce a certain type of summability to give meaning to (6.4.5). We shall
prove an identity for

(
1 +

1
a

) ∞∑
n=0

(−aq; q)n(−q/a; q)n(−t)n

(q; q2)n+1
,

and when we let t → 1−, the right-hand side will be seen to converge to the
right-hand side of (6.4.5).

Proof. After applying (1.7.3) below, we replace the index j by N + n + 1.
Thus, after some initial rearrangement, we find that

(
1 +

1
a

) ∞∑
n=0

(−aq; q)n(−q/a; q)n(−t)n

(q; q2)n+1

=
∞∑

n=0

(−t)na−n−1qn(n+1)/2(−aq−n; q)2n+1

(q; q2)n+1

=
∞∑

n=0

(−t)na−n−1qn(n+1)/2

(q; q2)n+1

∞∑
j=−∞

[
2n + 1

j

]
ajqj(j−1)/2−nj

=
∞∑

N=−∞
aN

∞∑
n=0

(−t)nqn(n+1)/2

(q; q2)n+1

[
2n + 1

N + n + 1

]
q(N+n+1)(N+n)/2−n(N+n+1)

=
∞∑

N=−∞
aNqN(N+1)/2

∞∑
n=0

(q2; q2)n(−t)n

(q; q)n−N (q; q)n+N+1

=:
∞∑

N=−∞
aNqN(N+1)/2CN (t), (6.4.6)
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where we note that, for N ≥ 0,

CN (t) = C−N−1(t). (6.4.7)

Hence, we shall now evaluate CN (t) for N ≥ 0.
To that end, we first replace n by n+N and then we apply (1.2.9) with a,

b, c, and t replaced by −qN+1, qN+1, q2N+2, and −t, respectively, to deduce
that

CN (t) =
∞∑

n=0

(q2; q2)n+N (−t)n+N

(q; q)n(q; q)n+2N+1

=
(q2; q2)N (−t)N

(q; q)2N+1

∞∑
n=0

(qN+1; q)n(−qN+1; q)n(−t)n

(q; q)n(q2N+2; q)n

=
(q2; q2)N (−t)N

(q; q)2N+1

(qN+1; q)∞(−tqN+1; q)∞
(q2N+2; q)∞(−t; q)∞

×
∞∑

n=0

(t; q)n(qN+1; q)nqn(N+1)

(q; q)n(−tqN+1; q)n

=
(−q; q)N (−tqN+1; q)∞(−t)N

(−t; q)∞

∞∑
n=0

(t; q)n(qN+1; q)nqn(N+1)

(q; q)n(−tqN+1; q)n
.

Hence, we deduce immediately that

lim
t→1−

CN (t) =
1
2
(−1)N . (6.4.8)

Also, using (6.4.7) and (6.4.8), we deduce that

lim
t→1−

C−N (t) = lim
t→1−

CN−1(t) = −1
2
(−1)N . (6.4.9)

Letting t → 1− in (6.4.6) and using (6.4.8) and (6.4.9), we obtain the right-
hand side of (6.4.5), as we promised immediately after the statement of Entry
6.4.6. ��

We note that Entry 6.4.6 is identical to Entry 5.4.3 in Chapter 5, where
an entirely different method was used.

6.5 Euler’s Identity and Its Extensions

The identity of Euler to which we refer is [18, p. 19, equation (2.25)]

∞∑
n=0

qn

(q)n
=

1
(q)∞

. (6.5.1)
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In this section we prove a number of identities from the lost notebook that are
slight variations on (6.5.1) and fit naturally into this chapter. The remainder
of the results in this section are so closely related in form that it is appropriate
that they should also appear in this section.

In the first entry and in others as well, we record a pair of identities,
because their proofs are inextricably intertwined.

Entry 6.5.1 (p. 31). We have

∞∑
n=0

qn

(−q; q)2n
=

∞∑
n=0

q12n2+n(1 − q22n+11)

+ q

∞∑
n=0

q12n2+7n(1 − q10n+5) (6.5.2)

and
∞∑

n=0

qn

(−q; q)2n+1
=

∞∑
n=0

q12n2+5n(1 − q14n+7)

+ q2
∞∑

n=0

q12n2+11n(1 − q2n+1). (6.5.3)

First Proof of Entry 6.5.1. We put a = i in Entry 6.3.2, assume that q is
real, and take the real parts of both sides to arrive at

h(q) : =
∞∑

n=0

qn

(−q2; q2)n
= Re

{
(1 + i)

∞∑
n=0

i3nqn(3n+1)/2(1 + q2n+1)

}

=
∞∑

n=0

(−1)nqn(6n+1)(1 + q4n+1) +
∞∑

n=0

(−1)nq(2n+1)(3n+2)(1 + q4n+3).

Let f(q) denote the left-hand side of (6.5.2). Then

f(q2) =
∞∑

n=0

q2n

(−q2; q2)2n

=
1
2

∞∑
n=0

(1 + (−1)n)qn

(−q2; q2)n

=
1
2

(h(q) + h(−q))

= Even part of

{ ∞∑
n=0

(−1)nqn(6n+1)(1 + q4n+1)

+
∞∑

n=0

(−1)nq(2n+1)(3n+2)(1 + q4n+3)

}
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=
∞∑

n=0

q24n2+2n −
∞∑

n=0

q24n2+34n+12

+
∞∑

n=0

q24n2+14n+2 −
∞∑

n=0

q24n2+46n+22.

Replacing q2 by q in the extremal sides of this last equality yields (6.5.2).
Let g(q) denote the left-hand side of (6.5.3). Then

qg(q2) =
∞∑

n=0

q2n+1

(−q2; q2)2n+1

=
1
2

∞∑
n=0

(1 − (−1)n)qn

(−q2; q2)n

=
1
2

(h(q) − h(−q))

= Odd part of

{ ∞∑
n=0

(−1)nqn(6n+1)(1 + q4n+1)

−
∞∑

n=0

(−1)nq(2n+1)(3n+2)(1 + q4n+3)

}

= −
∞∑

n=0

q24n2+26n+7 +
∞∑

n=0

q24n2+10n+1

−
∞∑

n=0

q24n2+38n+15 +
∞∑

n=0

q24n2+22n+5.

Dividing the last set of equalities by q and replacing q2 by q, we complete the
proof of (6.5.3). ��

Second Proof of Entry 6.5.1. We prove (6.5.2), as (6.5.3) can be similarly
proved.

Replacing q by q2 in (6.5.2), we obtain the identity

∞∑
n=0

q2n

(−q2; q2)2n

=
∞∑

n=0

q24n2+2n(1 − q44n+22) + q2
∞∑

n=0

q24n2+14n(1 − q20n+10).

(6.5.4)

The left-hand side generates partitions λ = λ1, . . . , λr into an even number of
odd parts with weight (−1)(λ1−1)/2. Clearly, λ is a partition of an even number.
By Sylvester’s map [26], such partitions have a one-to-one correspondence with
partitions into distinct parts. For a partition λ of an even number 2N into
odd parts, let μ = μ1, . . . , μs be the image of λ under Sylvester’s bijection,
which is a partition of 2N into distinct parts. Note that Sylvester’s bijection
preserves the following statistic:
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�(λ) +
λ1 − 1

2
= μ1,

where �(λ) denotes the number of parts in the partition λ. Since �(λ) is even,
we see that

(−1)(λ1−1)/2 = (−1)μ1 .

Thus it follows that
∞∑

n=0

q2n

(−q2; q2)2n

=
∞∑

N=0

∑
λ∈O2N

(−1)(λ1−1)/2q2N =
∞∑

N=0

∑
μ∈D2N

(−1)μ1q2N ,

(6.5.5)

where O2N and D2N are the sets of partitions of 2N into odd parts and dis-
tinct parts, respectively. We now apply the involution for Euler’s pentagonal
number theorem [18, pp. 10–12], in which we compare the smallest part and
the number of consecutive parts including the largest part. Note that in the
pentagonal number theorem, partitions π have weight (−1)�(π). However, the
involutive proof still works for our setting, since we move the smallest part
to the right of the consecutive parts or subtract 1 from each of the consecu-
tive parts in order to add the number of the consecutive parts as a new part.
Thus only the partitions of the even pentagonal numbers survive under the
involution in our setting, too. It is easy to see that

n(3n + 1)/2 ≡ 0 (mod 2), if n ≡ 0, 1 (mod 4),
n(3n − 1)/2 ≡ 0 (mod 2), if n ≡ 0, 3 (mod 4).

When n ≡ 0, 1 (mod 4), the surviving partition of n(3n + 1)/2 has parts
2n, 2n − 1, . . . , n + 1. The largest part of the partition is even. When n ≡
0, 3 (mod 4), the largest part of the partition of n(3n − 1)/2 is odd. Then,

∞∑
N=0

∑
μ∈D2N

(−1)μ1q2N (6.5.6)

=
∞∑

n=0
n(3n+1)/2≡0 (mod 2)

qn(3n+1)/2 −
∞∑

n=1
n(3n−1)/2≡0 (mod 2)

qn(3n−1)/2

=
∞∑

n=0

q24n2+2n(1 − q44n+22) + q2
∞∑

n=0

q24n2+14n(1 − q20n+10).

Hence, by (6.5.5) and (6.5.6), we complete the proof of (6.5.4), and hence also
of (6.5.2). ��

The second proof of Entry 6.5.1 is taken from a paper by Berndt, Kim,
and Yee [73]. Likewise, a bijective proof of Entry 6.5.2 can also be found in
the same paper. Another proof of Entry 6.5.2 can be found in a paper by
W. Chu and C. Wang [129].
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Entry 6.5.2 (p. 31). Recall that ϕ(q), f(−q), and f(a, b) are defined by
(1.4.9), (1.4.11), and (1.4.8), respectively. Then

∞∑
n=0

qn

(q)2n
=

1
ϕ(−q)

( ∞∑
n=−∞

q12n2+n − q
∞∑

n=−∞
q12n2+7n

)
(6.5.7)

=
f(q5, q3)
f(−q)

(6.5.8)

and
∞∑

n=0

qn

(q)2n+1
=

1
ϕ(−q)

( ∞∑
n=−∞

q12n2+5n − q2
∞∑

n=−∞
q12n2+11n

)
(6.5.9)

=
f(q7, q)
f(−q)

. (6.5.10)

These four identities are included in this one entry, because their proofs
are intertwined. L. Carlitz [98] represented each of the two series on the left-
hand sides as infinite products, from which it is easy to prove each of the four
assertions. However, we proceed from scratch.

Proof. This proof completely parallels the proof of Entry 6.5.1. However, the
key result at the beginning of the proof is more elementary in the proof at
hand.

Let

j(q) :=
∞∑

n=0

qn

(q2; q2)n
=

1
(q; q2)∞

, (6.5.11)

by (1.2.4). Let c(q) denote the left-hand side of (6.5.7). Then, by (6.5.11) and
by two applications of the Jacobi triple product identity (1.4.8),

c(q2) =
∞∑

n=0

q2n

(q2; q2)2n

=
1
2

∞∑
n=0

(1 + (−1)n)qn

(q2; q2)n

=
1
2

(j(q) + j(−q))

=
1
2

(
1

(q; q2)∞
+

1
(−q; q2)∞

)

=
1

2(q2; q2)∞

(
(−q; q4)∞(−q3; q4)∞(q4; q4)∞

+(q; q4)∞(q3; q4)∞(q4; q4)∞
)

=
1

2(q2; q2)∞

( ∞∑
n=−∞

q2n2+n +
∞∑

n=−∞
(−1)nq2n2+n

)
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=
1

(q2; q2)∞

∞∑
n=−∞

q8n2+2n =
f(q10, q6)
f(−q2)

,

which is (6.5.8) once q2 is replaced throughout by q.
Now, by (1.4.8), Euler’s identity, and the product representation for ϕ(−q)

in (1.4.9),

f(q5, q3)
f(−q)

=
(−q3; q8)∞(−q5; q8)∞(q8; q8)∞

(q; q)∞

=
(−q3; q8)∞(−q5; q8)∞(q8; q8)∞(q; q2)∞

ϕ(−q)

=
(q; q8)∞(q7; q8)∞(q10; q16)∞(q6; q16)∞(q8; q8)∞

ϕ(−q)

=
1

ϕ(−q)

∞∑
n=−∞

q12n2−n(1 − q8n+1),

where in the last step we applied the quintuple product identity (3.1.2) with
q replaced by q8 and with z = −q. It is easily seen that this last identity is
equivalent to (6.5.7).

Now let d(q) denote the left-hand side of (6.5.9). Then, by (6.5.11) and by
two applications of the Jacobi triple product identity (1.4.8),

qd(q2) =
∞∑

n=0

q2n+1

(q2; q2)2n+1

=
1
2

∞∑
n=0

(1 − (−1)n)qn

(q2; q2)n

=
1
2

(j(q) − j(−q))

=
1
2

(
1

(q; q2)∞
− 1

(−q; q2)∞

)

=
1

2(q2; q2)∞

(
(−q; q4)∞(−q3; q4)∞(q4; q4)∞

−(q; q4)∞(q3; q4)∞(q4; q4)∞
)

=
1

2(q2; q2)∞

( ∞∑
n=−∞

q2n2+n −
∞∑

n=−∞
(−1)nq2n2+n

)

=
q

(q2; q2)∞

∞∑
n=−∞

q8n2−6n =
qf(q2, q14)

f(−q2)
.

Divide by q throughout the display above and then replace q2 by q to achieve
the identity in (6.5.10).
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Now, by the Jacobi triple product identity (1.4.8), the product represen-
tation for ϕ(−q) given in (1.4.9), and Euler’s identity,

f(q, q7)
f(−q)

=
(−q; q8)∞(−q7; q8)∞(q8; q8)∞

(q; q)∞

=
(−q; q8)∞(−q7; q8)∞(q8; q8)∞(q; q2)∞

ϕ(−q)

=
(q3; q8)∞(q5; q8)∞(q8; q8)∞(q2; q16)∞(q14; q16)∞

ϕ(−q)

=
1

ϕ(−q)

∞∑
n=−∞

q12n2+5n(1 − q8n+3)

=
1

ϕ(−q)

( ∞∑
n=−∞

q12n2+5n − q2
∞∑

n=−∞
q12n2+11n

)
,

where in the penultimate line we applied the quintuple product identity (3.1.2)
with q replaced by q8, and z = −q3, and where in the last line we replaced n
by −n − 1 in the second sum. ��

The final entry in this section requires some auxiliary results that are
closely related in form to the series appearing in Entry 6.5.1.

Lemma 6.5.1. For each nonnegative integer N and d �= 0, q−n, 1 ≤ n < ∞,

∞∑
n=0

q(N+1)n

(dq)n
=

(q)N

dN+1(dq)∞
− (1 − d)(q)N

dN+1

N∑
n=0

dn

(q)n
.

Proof. Apply (1.2.9) with a = 0, b = q, c = dq, and t = qN+1 to find that

∞∑
n=0

q(N+1)n

(dq)n
=

1 − d

1 − qN+1

∞∑
n=0

dn

(qN+2)n

=
(1 − d)(q)N

dN+1

∞∑
n=0

dn+N+1

(q)n+N+1

=
(1 − d)(q)N

dN+1

( ∞∑
n=0

dn

(q)n
−

N∑
n=0

dn

(q)n

)

=
(q)N

dN+1(dq)∞
− (1 − d)(q)N

dN+1

N∑
n=0

dn

(q)n
,

where the last line follows from (1.2.2). From our application of (1.2.9), it is
required that 0 < d < 1, but this condition can be relaxed by appealing to
analytic continuation. ��
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Lemma 6.5.2. For each nonnegative integer m,

(q; q2)m

2m∑
n=0

(−1)n

(q; q)n
=

m∑
n=0

(−1)nqn2

(q2; q2)m−n
.

Proof. Denote the left- and right-hand sides of the lemma by Lm and Rm,
respectively. Clearly, L0 = R0 = 1. We show that Lm and Rm satisfy the
same two-term recurrence relation, and this suffices to prove the lemma.

First, for m ≥ 0,

Lm+1 = (1 − q2m+1)(q; q2)m

(
2m∑
n=0

(−1)n

(q; q)n
− 1

(q; q)2m+1
+

1
(q; q)2m+2

)

= (1 − q2m+1)Lm + (q; q2)m(1 − q2m+1)
q2m+2

(q; q)2m+2

= (1 − q2m+1)Lm +
q2m+2

(q2; q2)m+1
. (6.5.12)

Second, for m ≥ 0, splitting off the term for n = 0, we find that

Rm+1 − Rm =
m+1∑
n=0

(−1)nqn2

(q2; q2)m+1−n

(
1 − (1 − q2m+2−2n)

)

=
q2m+2

(q2; q2)m+1
+ q2m+1

m+1∑
n=1

(−1)nq(n−1)2

(q2; q2)m+1−n

=
q2m+2

(q2; q2)m+1
− q2m+1Rm. (6.5.13)

Hence, from (6.5.12) and (6.5.13), we see that Lm and Rm satisfy the
same recurrence relation. Thus, by mathematical induction, Lm = Rm for all
m ≥ 0. ��

Entry 6.5.3 (p. 21). For any complex number a,

∞∑
n=0

qn

(−q; q)n(aq; q2)n
= 2

∞∑
n=0

anq2n2

(aq; q2)n
− (q; q2)∞

(aq; q2)∞

∞∑
n=0

(−1)n(q; q2)nanqn2
.

Proof. By (1.2.6) and Lemma 6.5.1 with N = 2m and d = −1,

S : =
∞∑

n=0

qn

(−q; q)n(aq; q2)n

=
1

(aq; q2)∞

∞∑
n=0

qn

(−q; q)n
(aq2n+1; q2)∞

=
1

(aq; q2)∞

∞∑
n=0

qn

(−q; q)n

∞∑
m=0

(−1)mamqm2+2nm

(q2; q2)m
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=
1

(aq; q2)∞

∞∑
m=0

(−1)mamqm2

(q2; q2)m

∞∑
n=0

q(2m+1)n

(−q; q)n

=
1

(aq; q2)∞

∞∑
m=0

(−1)mamqm2

(q2; q2)m

{
− (q; q)2m

(−q; q)∞
+ 2(q; q)2m

2m∑
n=0

(−1)n

(q; q)n

}

= − (q; q2)∞
(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2

+
2

(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2
2m∑
n=0

(−1)n

(q; q)n
,

by Euler’s identity. Next, apply Lemma 6.5.2, replace m by m + n, invoke
(1.2.6) again, and utilize (1.2.2) to find that

S = − (q; q2)∞
(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2

+
2

(aq; q2)∞

∞∑
m=0

(−1)mamqm2
m∑

n=0

(−1)nqn2

(q2; q2)m−n

= − (q; q2)∞
(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2

+
2

(aq; q2)∞

∞∑
n=0

∞∑
m=0

(−1)mam+nqm2+2mn+2n2

(q2; q2)m

= − (q; q2)∞
(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2

+
2

(aq; q2)∞

∞∑
n=0

anq2n2
(aq2n+1; q2)∞

= − (q; q2)∞
(aq; q2)∞

∞∑
m=0

(−1)m(q; q2)mamqm2
+ 2

∞∑
n=0

anq2n2

(aq; q2)n
.

��

When a = 1, the latter series on the right-hand side of Entry 6.5.3 is one
of Ramanujan’s fifth order mock theta functions, namely φ(−q).

6.6 The Warnaar Theory

The final objective in this chapter is to prove the fourth identity on page 12 of
the lost notebook, Entry 6.6.1. The proof given in [21] is, at best, cumbersome
and unenlightening. Warnaar [273] has developed an extended and beautiful
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theory of partial theta functions. Consequently, he was able to provide a much
more coherent proof of Entry 6.6.1.

Warnaar’s starting point is the following striking generalization of the
Jacobi triple product identity [273, p. 367, equation (1.7)].

Theorem 6.6.1. For any complex numbers a and b,

(q)∞(a)∞(b)∞
∞∑

n=0

(ab/q)2nqn

(q)n(a)n(b)n(ab)n

= 1 +
∞∑

n=1

(−1)nanqn(n−1)/2 +
∞∑

n=1

(−1)nbnqn(n−1)/2. (6.6.1)

Thus, Warnaar has transformed the sum of two independent partial theta
functions into a single q-hypergeometric series.

We shall not follow Warnaar’s original proof of (6.6.1) but shall instead
deduce it from the formula for the product of two independent partial theta
functions given in the following theorem [38]. But before commencing with
this proof, we mention two further related approaches to Theorem 6.6.1 made
by A. Berkovich [50]. First, Berkovich deduced (6.6.1) from a formula of
G. Gasper and M. Rahman [150], [151, p. 235, equation (8.8.180)] for a prod-
uct of two 2φ1 series as a sum of two 6φ5 series. Second, he showed that (6.6.1)
is equivalent to the identity

∞∑
n=1

(−1)n xn − yn

x − y
qn(n−1)/2 = −(q)∞(xq)∞(yq)∞

∞∑
n=0

(xy)2nqn

(q)n(xq)n(yq)n(xy)n
,

which had earlier been discovered by A. Schilling and S.O. Warnaar [251,
Lemma 4.3 (first line of the proof)].

Theorem 6.6.2. For any complex numbers a and b,

(q)∞(a)∞(b)∞
∞∑

n=0

(abqn−1)nqn

(q)n(a)n(b)n

=

( ∞∑
n=0

(−1)nanqn(n−1)/2

)( ∞∑
n=0

(−1)nbnqn(n−1)/2

)
. (6.6.2)

As we shall see, identities (6.6.1) and (6.6.2) are equivalent. However, a
direct proof of (6.6.2) is a tiny bit smoother than that of (6.6.1), and (6.6.1)
is easily deduced from (6.6.2). An elegant combinatorial proof of (6.6.2) has
been devised by B. Kim [189].

Proof of Theorem 6.6.2. Let us use the notation

[xn]
∞∑

m=0

Amxm = An.
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Identity (6.6.2) is equivalent to the assertion that

[aM ][bN ](q)∞(a)∞(b)∞
∞∑

n=0

(abqn−1)nqn

(q)n(a)n(b)n
= (−1)M+NqM(M−1)/2+N(N−1)/2.

(6.6.3)
If we denote the left-hand side of (6.6.2) by L(a, b), then noting that

(x)∞/(x)n = (xqn)∞ and invoking (1.2.2) twice and (1.7.3) once, we see that

[aM ][bN ]L(a, b) = (−1)M+N (q)∞

×
∞∑

n=0

n∑
j=0

(−1)jqn(1+M+N−j)+j(j−1)/2+(M−j)(M−j−1)/2+(N−j)(N−j−1)/2−j

(q)j(q)n−j(q)M−j(q)N−j
.

Invert the order of summation, replace n by n + j, and use the corollary of
the q-binomial theorem (1.2.3) to deduce that

[aM ][bN ]L(a, b) = (−1)M+N (q)∞

×
∞∑

j=0

(−1)jqj(1+M+N−j)+j(j−1)/2+(M−j)(M−j−1)/2+(N−j)(N−j−1)/2−j

(q)j(q)M−j(q)N−j

×
∞∑

n=0

qn(1+M+N−j)

(q)n

= (−1)M+N (q)∞

×
∞∑

j=0

(−1)jqj(1+M+N−j)+j(j−1)/2+(M−j)(M−j−1)/2+(N−j)(N−j−1)/2−j

(q)j(q)M−j(q)N−j(q1+M+N−j)∞
.

Now use the easily established identity

(q)n−j =
(−1)j(q)n

qnj−j(j−1)/2(q−n)j
, 0 ≤ j ≤ n,

with n = M,N,M + N , and after an enormous amount of simplification, we
find that

[aM ][bN ]L(a, b) =
(−1)M+N (q)M+NqM(M−1)/2+N(N−1)/2

(q)M (q)N
(6.6.4)

×
min(M,N)∑

j=0

(q−M )j(q−N )jq
j

(q)j(q−M−N )j

= (−1)M+NqM(M−1)/2+N(N−1)/2, (6.6.5)

where we applied the second form of the q-Chu–Vandermonde summation
theorem (1.3.4). The evaluation (6.6.4) is what we wanted to demonstrate in
(6.6.3), and so the proof is complete. ��
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Proof of (6.6.1). We observe that

(q)∞(a)∞(b)∞
∞∑

n=0

(ab/q)2nqn

(q)n(a)n(b)n(ab)n

= (q)∞(a)∞(b)∞
∞∑

n=0

(1 − ab/q)(abqn)n−1q
n

(q)n(a)n(b)n

= (q)∞(a)∞(b)∞
∞∑

n=0

(1 − abqn−1 − (ab/q)(1 − qn))(abqn)n−1q
n

(q)n(a)n(b)n

= L(a, b) − ab(q)∞(a)∞(b)∞
∞∑

n=1

(abqn)n−1q
n−1

(q)n−1(a)n(b)n

= L(a, b) − abL(aq, bq), (6.6.6)

where in the penultimate step we replaced n by n + 1.
On the other hand, by (6.6.2),

L(a, b) − abL(aq, bq)

=

( ∞∑
n=0

(−1)nanqn(n−1)/2

)( ∞∑
n=0

(−1)nbnqn(n−1)/2

)

−
( ∞∑

n=1

(−1)nanqn(n−1)/2

)( ∞∑
n=1

(−1)nbnqn(n−1)/2

)

= 1 +
∞∑

n=1

(−1)nanqn(n−1)/2 +
∞∑

n=1

(−1)nbnqn(n−1)/2. (6.6.7)

If we employ (6.6.7) in (6.6.6), we complete the proof of (6.6.1). ��

We now restrict our considerations of Warnaar’s work to those portions
necessary to prove Entry 6.6.1 below. We point out, in Warnaar’s words, that
this is “just the tip of the iceberg.” Many further results are obtained by
Warnaar in his 33-page paper [273], including applications of Bailey pairs to
produce elegant multiple series identities for partial theta functions. Warnaar’s
theorem below can be found in [273, p. 370, equation (3.7)].

Theorem 6.6.3. If abc �= 0,
∞∑

n=0

(qn+1)n(q2/(bc))nqn

(a)n+1(q/a)n(q2/b)n(q2/c)n
−

∞∑
n=0

(b)n(c)n

(q2/b)n(q2/c)n

(
aq2

bc

)n

=
1

(q)∞(a)∞(q/a)∞

∞∑
n=1

(−1)nanqn(n+1)/2

×
∞∑

r=−∞

(−1)r(b)r(c)rq
r(r−1)/2

(q2/b)r(q2/c)r

(
qn+3

bc

)r

.
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Before commencing our proof, we note that if we replace a by −a, set
b = −q, and let c → ∞ in Theorem pt.t4, we deduce Entry 6.3.11.

Proof. We follow the development in [273, pp. 369–370]. First, we replace
a by aqr+1 and b by bqr in (6.6.1). After multiplying the numerator and
denominator on the right-hand side by (a)r+1(b)r(ab)2r+1, we find that

1 +
∞∑

n=1

(−1)nqn(n−1)/2
(
(aqr+1)n + (bqr)n

)

= q−r(q)∞(a)∞(b)∞
1 − abq2r

1 − ab

∞∑
n=r

(ab)2nqn

(q)n−r(abq)n+r(a)n+1(b)n
. (6.6.8)

Second, observe from the Jacobi triple product identity (1.4.8) that

(q/b)r(b)∞(q/b)∞(q)∞ =
∞∑

n=−∞
bnq(n+r)(n+r−1)/2+r. (6.6.9)

If we now add and subtract the series
∞∑

n=1

(−1)n+ranq(n+r)(n+r+1)/2

to (6.6.9) and rearrange, we find that

(−1)rqr(r+1)/2

(
1 +

∞∑
n=1

(−1)nqn(n−1)/2
(
(aqr+1)n + (bqr)n

))

= (q/b)r(b)∞(q/b)∞(q)∞

+
∞∑

n=1

(−1)n+r
(
anq(n+r)(n+r+1)/2 − (q/b)nq(n−r)(n−r−1)/2

)
.

Hence, using this last identity in (6.6.8), we deduce that

(q/b)r(b)∞(q/b)∞(q)∞

+
∞∑

n=1

(−1)n+r
(
anq(n+r)(n+r+1)/2 − (q/b)nq(n−r)(n−r−1)/2

)

= (−1)rqr(r−1)/2(q)∞(a)∞(b)∞
1 − abq2r

1 − ab

∞∑
n=r

(ab)2nqn

(q)n−r(abq)n+r(a)n+1(b)n
.

We now multiply both sides of this last identity by a sequence fr, to be spec-
ified later, and sum over all nonnegative integers r. Hence, assuming that fr

satisfies suitable conditions for convergence, inverting the order of summation,
and dividing both sides of the resulting identity by (q)∞(a)∞(b)∞, we find
that
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∞∑
n=0

(ab)2nqn

(a)n+1(b)n

n∑
r=0

(−1)rfrq
r(r−1)/2(1 − abq2r)

(q)n−r(ab)n+r+1
− (q/b)∞

(a)∞

∞∑
r=0

(q/b)rfr

=
(−1)n+rq(n+r)(n+r+1)/2

(q)∞(a)∞(b)∞

∞∑
n=1

(
an

∞∑
r=0

fr + (q/b)n
−1∑

r=−∞
f−r−1

)
.

(6.6.10)

We now specialize (6.6.10) by replacing b by q/a and then taking

fr :=
(b)r(c)r

(q2/b)r(q2/c)r

(
q2

bc

)r

. (6.6.11)

Observe that for each nonnegative integer r,

(b)−r−1 =
(−1)r+1q(r+1)(r+2)/2

br+1(q/b)r+1
.

Replacing b by q2/b above, we find that

(q2/b)−r−1 =
(−1)r+1q(r+1)(r+2)/2

(q2/b)r+1(b/q)r+1
.

Dividing the penultimate equality by the last equality and simplifying, we find
that

(b)−r−1

(q2/b)−r−1

(q

b

)−r−1

= − (b)r

(q2/b)r

(q

b

)r

.

Replacing b by c above and multiplying the two equalities together, we deduce
that

f−r−1 = fr. (6.6.12)

Furthermore, with fr defined by (6.6.11), we find that

S :=
n∑

r=0

(−1)rfrq
r(r−1)/2(1 − q2r+1)

(q)n−r(q)n+r+1

=
1

(q)n(q)n+1

n∑
r=0

(b)r(c)r(q−n)r(q2/(bc))rqnr(1 − q2r+1)
(q2/b)r(q2/c)r(qn+2)r

. (6.6.13)

We now apply (4.1.3) to the right-hand side of (6.6.13) with β = αq/γ, and
then with α = q, N = n, δ = b, and ε = c. Accordingly, upon simplification,
we conclude that

S =
(q2/(bc))n

(q)n(q2/b)n(q2/c)n
. (6.6.14)

Lastly, we utilize (6.6.12) and put (6.6.11) and (6.6.14) into (6.6.10). After
simplification, we deduce the identity of Theorem 6.6.3. ��
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Entry 6.6.1 (p. 12). For any complex number a �= 0,

∞∑
n=0

(qn+1)nqn

(−aq)n(−q/a)n
= (1 + a)

∞∑
n=0

(−1)nanqn(n+1)

− a

(−aq)∞(−q/a)∞

∞∑
n=0

(−1)na3nq3n2+2n(1 + aq2n+1).

Proof. In Theorem 6.6.3, replace a by −a, multiply both sides by (1 + a),
and let b and c tend to ∞. Consequently,

T :=
∞∑

n=0

(qn+1)nqn

(−aq)n(−q/a)n
− (1 + a)

∞∑
r=0

(−1)rarqr(r+1)

=
1

(q)∞(−aq)∞(−q/a)∞

∞∑
n=1

anqn(n+1)/2
∞∑

r=−∞
(−1)rq3r(r−1)/2+(n+3)r

=
1

(q)∞(−aq)∞(−q/a)∞

−1∑
ν=−3

∞∑
n=1

a3n+νq(3n+ν)(3n+ν+1)/2

×
∞∑

r=−∞
(−1)rq3r(r−1)/2+(3n+ν+3)r

=
1

(q)∞(−aq)∞(−q/a)∞

−1∑
ν=−3

∞∑
n=1

a3n+νqν(ν+1)/2+3n2+2nν

×
∞∑

r=−∞
(−1)r−nq3r(r+1)/2+rν .

Recall from (1.4.12) that f(−1, q3) = 0. Thus, the sum on r vanishes when
ν = 0, and otherwise the sum is equal to (−1)n(q)∞ by (1.4.8). Thus, we find
that

T =
1

(−aq)∞(−q/a)∞

−1∑
ν=−2

∞∑
n=1

(−1)na3n+νqν(ν+1)/2+3n2+2nν

= − 1
(−aq)∞(−q/a)∞

( ∞∑
n=0

(−1)na3n+1q3n2+2n −
∞∑

n=0

(−1)na3n+2q3n2+4n+1

)

= − a

(−aq)∞(−q/a)∞

∞∑
n=0

(−1)na3nq3n2+2n(1 + aq2n+1).

This therefore completes the proof. ��
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Special Identities

7.1 Introduction

A few of Ramanujan’s identities do not fit naturally into any of the previous
chapters. In this chapter, we have gathered two groups of such results. The
first four identities to be examined have previously been proved [20] by relat-
ing them to the theory of Durfee rectangles [13]. We provide an alternative
development based on functional equations in Section 7.2.

The three identities in Section 7.3 are among the more surprising identities
in the lost notebook. They were first proved in [25]; however, the proofs there
provide no significant insight into the reasons for their existence. In [36], the
fundamental idea lying behind these results was exposed in Proposition 2.1
(Entry 7.2.4 below). Subsequently, Andrews and P. Freitas [35], G.H. Coogan
and K. Ono [138], and J. Lovejoy and Ono [213] have exploited this method
and given some further interesting applications to evaluations of L-series. In
[35], Proposition 2.1 of [36] was placed in the context of Abel’s Lemma and
greatly generalized. S.H. Chan [119] derived an identity in the same spirit of
Ramanujan’s identity, but with arbitrarily many q-products. To effect this,
he employed Sears’s general transformation formula to derive a power series
identity with the requisite q-products, and then proceeded on the same path
as previous authors by applying the operator limx→1−

d
dx to both sides of his

identity.
Section 7.4 concludes the chapter with a couple of innocent formulas that

require two completely different representations of the very well-poised 10φ9

to effect their proofs. This seeming mismatch between simplicity of statement
and complexity of proof is among the more mysterious aspects of the lost
notebook; hence this section is named Innocents Abroad.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 8, c© Springer Science+Business Media, LLC 2009
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7.2 Generalized Modular Relations

In his enigmatic list [85], [32] of 40 modular relations for the Rogers–
Ramanujan functions

G(q) :=
∞∑

n=0

qn2

(q)n
and H(q) :=

∞∑
n=0

qn2+n

(q)n
,

Ramanujan asserted that

G(q)G(q4) + qH(q)H(q4) =
ϕ(q)

(q2; q2)∞
. (7.2.1)

G.N. Watson, in addition to proving (7.2.1) in [277], also proved in [280] that

G(−q)ϕ(q) − G(q)ϕ(−q) = 2qH(q4)ψ(q2) (7.2.2)

and
H(−q)ϕ(q) + H(q)ϕ(−q) = 2G(q4)ψ(q2). (7.2.3)

These three modular relations all turn out to be specializations of formulas
from the lost notebook, as we shall see.

Entry 7.2.1 (p. 27). For any complex numbers a and b,

∞∑
n=0

anbnqn2

(−aq)n(−bq)n
=

∞∑
n=0

(−1)na2nbnq2n2

(−aq)n(−bq)2n
+

∞∑
n=0

(−1)na2n+1bn+1q2n2+3n+1

(−aq)n(−bq)2n+1
.

(7.2.4)

Entry 7.2.1 was proved in [13], where the proof was based on Durfee rect-
angles. We first give this proof and then provide a different proof.

First Proof of Entry 7.2.1. Replacing a and b by −a and −b, respectively, we
prove the equivalent identity

∞∑
n=0

anbnqn2

(aq)n(bq)n
=

∞∑
n=0

a2nbnq2n2

(aq)n(bq)2n
+

∞∑
n=0

a2n+1bn+1q2n2+3n+1

(aq)n(bq)2n+1
. (7.2.5)

When a = 1, the coefficient of bmqn on the left-hand side of (7.2.5) is the
number of partitions of n with exactly m parts. For general a, we further see
that the coefficient of bmarqn is the number of partitions of n into m parts
with largest part equal to r.

Our objective next is to identify the right-hand side of (7.2.5) as precisely
the same generating function. Consider a Ferrers rectangle of n rows and 2n
columns of nodes. To these 2n2 nodes we attach a partition π1 (to be read by
columns) on the right side with at most n dots in each column, while below
we attach a partition π2 with at most 2n dots in each row. We note that the
total number of parts in the entire partition is
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n + the number of parts of π2,

while the largest part of the partition is

2n + the number of columns of π1.

The generating function for all such partitions with this Durfee rectangle is

bna2nq2n2

(aq)n(bq)2n
, (7.2.6)

where the exponent of b gives the number of parts of the partition, and the
exponent of a yields the largest part of the partition. If we sum over all n,
0 ≤ n < ∞, it appears that we obtain all such partitions and thus obtain a
new representation for the left side of (7.2.5). This is not the case, however,
because we have omitted from consideration a large class of partitions, namely,
all partitions π with a node in the (n + 1)st row and (2n + 1)st column, and
which are not counted in partitions associated with the next-largest Durfee
rectangle, i.e., the one of size (n + 1) × (2n + 2). These omitted partitions
attached to the n × 2n Durfee rectangle are generated by

bn+1a2n+1q(n+1)(2n+1)

(aq)n(bq)2n+1
. (7.2.7)

If we now sum both (7.2.6) and (7.2.7) over n, 0 ≤ n < ∞, then we obtain
the generating function for all partitions in which the coefficient of bmarqn is
the number of partitions of n into m parts with the largest part equal to r.
Consequently, the two sides of (7.2.5) are equal. ��

Second Proof of Entry 7.2.1. Let us denote the left-hand side of this entry
by fL(a, b) and the right-hand side by fR(a, b), where

fR(a, b) = T1(a, b) + T2(a, b), (7.2.8)

with T1 and T2 being, respectively, the two sums that appear on the right side
of (7.2.4). We note that fL(a, b) and fR(a, b) are analytic in a and b around
(0, 0), where each takes the value 1. Furthermore,

fL(a, b) = 1 +
∞∑

n=0

an+1bn+1qn2+2n+1

(−aq)n+1(−bq)n+1

= 1 +
abq

(1 + aq)(1 + bq)
fL(aq, bq), (7.2.9)

and by iteration we see that fL(a, b) is uniquely determined by (7.2.9) and
analyticity at (0, 0). So to conclude the proof of this identity, we only need to
show that fR(a, b) satisfies the same functional equation as (7.2.9).

Now,
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T1(a, b) = 1 +
∞∑

n=0

(−1)n+1a2n+2bn+1q2n2+4n+2

(−aq)n+1(−bq)2n+2

= 1 − abq

(1 + aq)(1 + bq)

∞∑
n=0

(−1)na2n+1bnq2n2+4n+1

(−aq2)n(−bq2)2n+1

and

T2(a, b) =
abq

(1 + aq)(1 + bq)

∞∑
n=0

(−1)na2nbnq2n2+3n(1 + aqn+1)
(−aq2)n(−bq2)2n

=
abq

(1 + aq)(1 + bq)
T1(aq, bq)

+
a2b

(1 + aq)(1 + bq)

∞∑
n=0

(−1)na2nbnq2n2+4n+2

(−aq2)n(−bq2)2n
.

Hence,

fR(a, b) = 1 − abq

(1 + aq)(1 + bq)

∞∑
n=0

(−1)na2n+1bnq2n2+4n+1

(−aq2)n(−bq2)2n+1

+
abq

(1 + aq)(1 + bq)
T1(aq, bq)

+
a2b

(1 + aq)(1 + bq)

∞∑
n=0

(−1)na2nbnq2n2+4n+2

(−aq2)n(−bq2)2n

= 1 +
abq

(1 + aq)(1 + bq)
T1(aq, bq) +

abq

(1 + aq)(1 + bq)
T2(aq, bq)

= 1 +
abq

(1 + aq)(1 + bq)
fR(aq, bq).

��
There is a further representation of fL and fR required subsequently,

namely,

fL(a, b) = fR(a, b) = f0(a, b) := 1 − b
∞∑

n=1

(−1)nanqn

(−bq)n
. (7.2.10)

Clearly f0(0, 0) = 1 and f0(a, b) is continuous in a neighborhood of (0, 0).
Furthermore,

f0(a, b) = 1 +
abq

1 + bq
+

b

1 + bq

∞∑
n=1

(−1)nan+1qn+1

(−bq2)n

= 1 +
abq

1 + bq
+

a

1 + bq
(1 − f0(a, bq))

= 1 + a − a

1 + bq
f0(a, bq). (7.2.11)
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On the other hand,

f0(a, b) + bf0(aq, b) = 1 + b − b

∞∑
n=1

(−1)nanqn(1 + bqn)
(−bq)n

= 1 + b − b
∞∑

n=1

(−1)nanqn

(−bq)n−1

= 1 + b + b

∞∑
n=0

(−1)nan+1qn+1

(−bq)n

= 1 + b + baq + aq(1 − f0(a, b)). (7.2.12)

Hence,

f0(a, b) = 1 + b − b

1 + aq
f0(aq, b). (7.2.13)

We now replace b by bq in (7.2.13) and then substitute the resulting identity
into (7.2.11) to deduce that

f0(a, b) = 1 + a − a

1 + bq

(
1 + bq − bq

1 + aq
f(aq, bq)

)

= 1 +
abq

(1 + aq)(1 + bq)
f0(aq, bq).

Thus, f0(a, b) satisfies the same functional equation and initial conditions as
fL(a, b) and fR(a, b). Thus (7.2.10) is proved.

Finally, we also require the values

fL(a,−1) = fR(a,−1) = f0(a,−1) =
1

(−aq)∞
. (7.2.14)

These immediately follow from the fact that

f0(a,−1) = 1 +
∞∑

n=1

(−1)nanqn

(q)n
=

∞∑
n=0

(−aq)n

(q)n
=

1
(−aq)∞

, (7.2.15)

by (1.2.3).

Entry 7.2.2 (p. 27). If a and b are any complex numbers, except that a �= 0,
then

∞∑
n=0

anbnqn2/4

(q)n

∞∑
m=0

a−2mqm2

(bq)m
+

∞∑
n=0

anbnq(n+1)2/4

(q)n

∞∑
m=0

a−2m−1qm2+m

(bq)m

=
1

(bq)∞

∞∑
n=−∞

anqn2/4 − (1 − b)
∞∑

n=1

anqn2/4
n−1∑
j=0

bj

(q)j
.
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Proof. Noting that 1/(q)−n = 0 for n > 0, we may equate coefficients of aN ,
−∞ < N < ∞, on each side of the desired identity. Hence, we must prove
that, for every integer N ,

∞∑
m=0

bN+2mq(N+2m)2/4+m2

(q)N+2m(bq)m
+

∞∑
m=0

bN+2m+1q(N+2m+2)2/4+m2+m

(q)N+2m+1(bq)m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qN2/4

(bq)∞
, if N ≤ 0,

qN2/4

(bq)∞
− (1 − b)qN2/4

N−1∑
j=0

bj

(q)j
, if N > 0.

(7.2.16)

We distinguish three cases in the proof of (7.2.16).
Case 1. N = −2ν, where ν is a nonnegative integer. Replace m by m + ν
throughout (7.2.16). Accordingly, the left-hand side of (7.2.16) becomes, with
the use of (7.2.15),

∞∑
m=0

b2mq2m2+2mν+ν2

(q)2m(bq)m+ν
+

∞∑
m=0

b2m+1q2m2+3m+1+2mν+ν2+ν

(q)2m+1(bq)m+ν

=
qν2

(bq)ν
fR(−bqν ,−1)

=
qν2

(bq)ν

1
(bqν+1)∞

=
qν2

(bq)∞
=

qN2/4

(bq)∞
,

and thus (7.2.16) is established in this case.
Case 2. N = −2ν−1, where ν is a nonnegative integer. Replace m by m+ν+1
in the first sum in (7.2.16) and by m + ν in the second. So, the left-hand side
of (7.2.16) becomes

∞∑
m=0

b2m+1q(2m+1)2/4+(m+ν+1)2

(q)2m+1(bq)m+ν+1
+

∞∑
m=0

b2mq(2m+1)2/4+(m+ν)2+m+ν

(q)2m(bq)m+ν

=
qν2+ν+1/4

(bq)ν

{ ∞∑
m=0

(bqν)2mq2m2
(1 − (1 − q2m))

(q)2m(bqν+1)m

+
∞∑

m=0

(bqν)2m+1q2m2+3m+1

(q)2m+1(bqν+1)m

(
1 +

bqm+ν+1

1 − bqm+ν+1

)}

=
q(ν+1/2)2

(bq)ν
fR(−bqν ,−1) +

q(ν+1/2)2

(bq)ν

{
−

∞∑
m=1

(bqν)2mq2m2

(q)2m−1(bqν+1)m

+
∞∑

m=0

(bqν)2m+2q2(m+1)2

(q)2m+1(bqν+1)m+1

}

=
q(ν+1/2)2

(bq)ν

1
(bqν+1)∞

=
qN2/4

(bq)∞
,
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by (7.2.10), (7.2.14), and the fact that in the penultimate expression, the series
inside curly brackets cancel when m is replaced by m + 1 in the first sum.
Hence, (7.2.16) is established in the second case.
Case 3. N > 0. Using (1.2.3), we find that the right-hand side of (7.2.16) is
equal to

qN2/4

(bq)∞
− (1 − b)qN2/4

N−1∑
j=0

bj

(q)j
= qN2/4

⎛
⎝ 1

(bq)∞
−

N−1∑
j=0

bj

(q)j
+

N∑
j=1

bj

(q)j−1

⎞
⎠

= qN2/4

⎛
⎝ 1

(bq)∞
−

N∑
j=0

bjqj

(q)j
+

bN

(q)N

⎞
⎠

= qN2/4

⎛
⎝ ∞∑

j=N+1

bjqj

(q)j
+

bN

(q)N

⎞
⎠

=
qN2/4bN

(q)N

⎛
⎝1 +

∞∑
j=N+1

bj−Nqj

(qN+1)j−N

⎞
⎠

=
qN2/4bN

(q)N

⎛
⎝1 +

∞∑
j=1

bjqN+j

(qN+1)j

⎞
⎠

=
qN2/4bN

(q)N
f0(−b,−qN ), (7.2.17)

by (7.2.10). On the other hand, the left-hand side of (7.2.16) is

qN2/4bN

(q)N

{ ∞∑
m=0

b2mqNmq2m2

(qN+1)2m(bq)m
+

∞∑
m=0

b2m+1qN(m+1)q2m2+3m+1

(qN+1)2m+1(bq)m

}

=
qN2/4bN

(q)N
fR(−b,−qN ), (7.2.18)

by (7.2.4) and (7.2.8). In light of the fact that fR(a, b) = f0(a, b), we see, from
(7.2.17) and (7.2.18), that the two sides of (7.2.16) are identical in this final
case. ��

Entry 7.2.3 (p. 26). For a �= 0,
( ∞∑

n=0

anqn2/4

(q)n

)( ∞∑
n=0

a−2nqn2

(q)n

)
+

( ∞∑
n=0

anq(n+1)2/4

(q)n

)( ∞∑
n=0

a−2n−1qn2+n

(q)n

)

=
1

(q)∞

∞∑
n=−∞

anqn2/4.

Proof. Set b = 1 in Entry 7.2.2. ��
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In the middle of page 26 of the lost notebook, we find the claim, upon
changing to more contemporary notation,

∞∑
n=0

anqn2/(2s)

(q)n

∞∑
n=0

a−nsqn2s/2

(q)n
as q → 1??

We note that this is the first expression on the left-hand side of Entry 7.2.3
when s = 2. Ramanujan provides no indication either why this is of interest
for arbitrary s or what the asymptotics should be.

Entry 7.2.4 (p. 26). For a �= 0,
( ∞∑

n=−∞
anqn2/4

)( ∞∑
n=0

(−1)nanqn2/4

(q)n

)

−
( ∞∑

n=−∞
(−1)nanqn2/4

)( ∞∑
n=0

anqn2/4

(q)n

)
= 2(q)∞

∞∑
n=0

a−2n−1q(2n+1)2/4

(q)n
.

Proof. Clearly, the left-hand side of this identity is an odd function of a.
Consequently, the coefficients of all even powers of a are equal to 0.

The coefficient of a−2N−1 on the left-hand side is
∞∑

n=0

(−1)nqn2/4+(−2N−1−n)2/4

(q)n
−

∞∑
n=0

(−1)−2N−1−nqn2/4+(−2N−1−n)2/4

(q)n

= 2
∞∑

n=0

(−1)nqn(n+1)/2+Nn+(2N+1)2/4

(q)n

= 2q(2N+1)2/4(qN+1)∞,

by (1.2.4). We see that we have obtained the coefficient of a−2N−1 on the
right-hand side of Entry 7.2.4, and so the proof is complete. ��

Entry 7.2.5 (p. 30). If a �= 0, then

(
1 +

1
a

) ∞∑
n=0

(−1)n(b/a)nqn(n+1)/2

(−bq)n
=

1
a

∞∑
n=0

(−1)n(b/a)nqn(n+1)/2

(−aq)n(−bq)2n+1

+
∞∑

n=0

(−1)n(b/a)nqn(n+3)/2

(−aq)n(−bq)2n
. (7.2.19)

Proof. Multiply both sides of (7.2.19) by (−bq)∞ to obtain the equivalent
identity

(
1 +

1
a

) ∞∑
n=0

(−1)n(b/a)nqn(n+1)/2(−bqn+1)∞
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=
1
a

∞∑
n=0

(−1)n(b/a)nqn(n+1)/2

(−aq)n
(−bq2n+2)∞

+
∞∑

n=0

(−1)n(b/a)nqn(n+3)/2

(−aq)n
(−bq2n+1)∞.

If we now expand each infinite product appearing above by (1.2.4), and then
compare coefficients of bN on each side, we find that the proof of Entry 7.2.5
is reduced to proving that, for each nonnegative integer N ,

(
1 +

1
a

) N∑
n=0

(−1)na−n

(q)N−n
=

N∑
n=0

(−1)na−nqn(N−n)(qn + a−1qN−n)
(−aq)n(q)N−n

,

or equivalently,

LN :=
N∑

n=0

(−1)na−n

(q)N−n
=

N∑
n=0

(−1)na−n+1qn(N−n)(qn + a−1qN−n)
(−a)n+1(q)N−n

=: RN .

(7.2.20)
Clearly,

L0 = R0 = 1. (7.2.21)

Now,

LN =
N∑

n=0

(−1)na−n

(q)N−n
=

N∑
n=0

(−1)N−na−N+n

(q)n

= −1
a

N−1∑
n=0

(−1)N−1−na−N+1+n

(q)n
+

1
(q)N

= −1
a
LN−1 +

1
(q)N

. (7.2.22)

On the other hand,

RN + a−1RN−1 =
N∑

n=0

(−1)na−n+1qn(N−n)+n

(−a)n+1(q)N−n
+

N∑
n=0

(−1)na−nq(n+1)(N−n)

(−a)n+1(q)N−n

+
N−1∑
n=0

(−1)na−nqn(N−n)

(−a)n+1(q)N−n−1
+

N−1∑
n=0

(−1)na−n−1q(n+1)(N−n−1)

(−a)n+1(q)N−n−1

=
N∑

n=0

(−1)na−n+1qn(N−n)+n

(−a)n+1(q)N−n
+

N∑
n=0

(−1)na−nqn(N−n)

(−a)n+1(q)N−n

+
N−1∑
n=0

(−1)na−n−1q(n+1)(N−n−1)

(−a)n+1(q)N−n−1
,
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where we used the fact that 1/(q)−1 = 0 and where we added the second and
third sums term by term. Adding the first and second sums term by term, we
find that

RN + a−1RN−1 =
N∑

n=0

(−1)na−nqn(N−n)

(−a)n(q)N−n
+

N−1∑
n=0

(−1)na−n−1q(n+1)(N−n−1)

(−a)n+1(q)N−n−1

=
1

(q)N
+

N−1∑
n=0

(−1)n+1a−n−1q(n+1)(N−n−1)

(−a)n+1(q)N−n−1

+
N−1∑
n=0

(−1)na−n−1q(n+1)(N−n−1)

(−a)n+1(q)N−n−1

=
1

(q)N
. (7.2.23)

Thus, since L0 = R0 by (7.2.21), and since both sides of (7.2.20) satisfy
the same inhomogeneous first-order recurrence by (7.2.22) and (7.2.23), we
can conclude that

LN = RN .

This therefore proves (7.2.20), and thus the proof of Entry 7.2.5 is complete.
��

In concluding this section, we note that (7.2.1) follows immediately from
Entry 7.2.2 by replacing q by q4, setting a = b = 1, and invoking the two
formulas

G(q) = (−q2; q2)∞
∞∑

n=0

qn2

(q4; q4)n

and

H(q) = (−q2; q2)∞
∞∑

n=0

qn2+2n

(q4; q4)n
,

both due to L.J. Rogers [248]. Identity (7.2.2) follows from Entry 7.2.3 when
we replace a by 1 and q by q4, and then multiply both sides by (−q2; q2)∞.
Identity (7.2.3) follows from Entry 7.2.3 if we replace q by q4, then set a = q2,
and lastly multiply both sides by q(−q2; q2)∞.

7.3 Extending Abel’s Lemma

The main results in this section, Entries 7.3.2 and 7.3.3, are rather natural
corollaries of the following generalization of Abel’s Lemma [36, p. 403].

Theorem 7.3.1. Suppose that
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f(z) :=
∞∑

n=0

αnzn

is analytic for |z| < 1. Let α be a complex number for which

∞∑
n=0

|α − αn| < +∞, (7.3.1)

lim
n→+∞

n(α − αn) = 0. (7.3.2)

Then

lim
z→1−

d

dz
(1 − z)f(z) =

∞∑
n=0

(α − αn).

Proof. We recall Abel’s Lemma [14, pp. 190–191, Theorem 14-7]. If limn→∞ An

= L, then

lim
z→1−

(1 − z)
∞∑

n=0

Anzn = L. (7.3.3)

In the first step below, the insertion of z in the denominator introduces an
extra expression that is equal to −α by Abel’s Lemma. Thus, we must com-
pensate for this insertion by adding α. Consequently, assuming that α−1 = 0,
we find that

lim
z→1−

d

dz
(1 − z)f(z) = lim

z→1−

d

dz
(1 − z)

f(z)
z

+ α

= lim
z→1−

∞∑
n=0

(nαn − (n − 1)αn−1 − αn) zn−2 + α

= lim
z→1−

∞∑
n=0

(nαn − (n − 1)αn−1 − αn) zn + α

= lim
z→1−

∞∑
n=0

(−n(α − αn) + (n − 1)(α − αn−1)

+(α − αn)) zn + α

= lim
z→1−

( ∞∑
n=0

−n(α − αn)zn +
∞∑

n=−1

n(α − αn)zn+1

)

+ lim
z→1−

∞∑
n=0

(α − αn)zn + α

= − lim
z→1−

(1 − z)
∞∑

n=0

n(α − αn)zn − α

+ lim
z→1−

∞∑
n=0

(α − αn)zn + α
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= − lim
z→1−

(1 − z)
∞∑

n=0

n(α − αn)zn + lim
z→1−

∞∑
n=0

(α − αn)zn

= 0 + lim
z→1−

∞∑
n=0

(α − αn)zn

=
∞∑

n=0

(α − αn),

where in the penultimate line we applied (7.3.3) and (7.3.2), and where in the
last line we used (7.3.1) and the fact that the series converges uniformly for
0 ≤ z ≤ 1. ��

We may now apply Theorem 7.3.1 to a couple of instances relevant to
Ramanujan’s work. The following theorem was first proved in [36, p. 397].

Theorem 7.3.2. For |a| < |t| and a �= 0,

∞∑
n=0

(
(t)∞
(a)∞

− (t)n

(a)n

)
=

∞∑
n=1

(q/a)n

(q/t)n

(a

t

)n

+
(t)∞
(a)∞

( ∞∑
n=1

qn

1 − qn
+

∞∑
n=1

t−1qn

1 − t−1qn
−

∞∑
n=0

tqn

1 − tqn
−

∞∑
n=0

at−1qn

1 − at−1qn

)
.

Proof. Using the q-binomial theorem (1.2.2), we can easily check that the
conditions (7.3.1) and (7.3.2) of Theorem 7.3.1 are fulfilled for

αn :=
(t)n

(a)n
.

After employing Theorem 7.3.1, we add and subtract terms in the sum on the
right-hand side so that we can apply Ramanujan’s 1ψ1 summation (3.1.4).
Then in the “added” sum, we make two applications of the easily verified
identity

(c)−n =
(−1)nqn(n+1)/2

cn(q/c)n
, n ≥ 1.

In the third step below, we termwise differentiate the two series in powers of
1/z and simplify. Accordingly, for |a/(tz)| < 1, we find that

∞∑
n=0

(
(t)∞
(a)∞

− (t)n

(a)n

)
= lim

z→1−

d

dz
(1 − z)

∞∑
n=0

(t)n

(a)n
zn

= lim
z→1−

d

dz
(1 − z)

( ∞∑
n=−∞

(t)n

(a)n
zn −

∞∑
n=1

(q/a)n

(q/t)n

( a

tz

)n
)

= lim
z→1−

d

dz
(1 − z)

(
(q, a/t, tz, q/(tz); q)∞
(a, q/t, z, a/(tz); q)∞

)
+

∞∑
n=1

(q/a)n

(q/t)n

(a

t

)n
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=
(q)∞(a/t)∞
(a)∞(q/t)∞

(
d

dz

(tz)∞(q/(tz))∞
(zq)∞(a/(tz))∞

)∣∣∣∣
z=1

+
∞∑

n=1

(q/a)n

(q/t)n

(a

t

)n

=
(t)∞
(a)∞

( ∞∑
n=1

qn

1 − qn
+

∞∑
n=1

t−1qn

1 − t−1qn
−

∞∑
n=0

tqn

1 − tqn
−

∞∑
n=0

at−1qn

1 − at−1qn

)

+
∞∑

n=1

(q/a)n

(q/t)n

(a

t

)n

,

as desired. ��
Theorem 7.3.3. For 0 < |b| < 1,

∞∑
n=0

(
(a)∞(b)∞
(q)∞(c)∞

− (a)n(b)n

(q)n(c)n

)

=
(a)∞(b)∞
(q)∞(c)∞

( ∞∑
n=1

qn

1 − qn
−

∞∑
n=0

aqn

1 − aqn
−

∞∑
n=1

(c/b)nbn

(a)n(1 − qn)

)
.

Proof. We apply Theorem 7.3.1 when

αn =
(a)n(b)n

(q)n(c)n
. (7.3.4)

We must check that the conditions (7.3.1) and (7.3.2) hold. First, we check
that (7.3.1) holds. For brevity below, define

K(a, b, c, q) :=
(−|a|; |q|)∞(−|b|; |q|)∞

(|q|; |q|)∞(|c|; |q|)∞
.

Hence, using the definition above and the q-binomial theorem (1.2.2) twice,
we find that
∞∑

n=0

|α − αn| =
∞∑

n=0

∣∣∣∣ (a)∞(b)∞
(q)∞(c)∞

− (a)n(b)n

(q)n(c)n

∣∣∣∣
≤ (−|a|; |q|)∞(−|b|; |q|)∞

(|q|; |q|)∞(|c|; |q|)∞

∞∑
n=0

∣∣∣∣1 − (qn+1)∞(cqn)∞
(aqn)∞(bqn)∞

∣∣∣∣

= K(a, b, c, q)
∞∑

n=0

∣∣∣∣∣1 −
∞∑

r=0

(q/a)ra
rqnr

(q)r

∞∑
s=0

(c/b)sb
sqns

(q)s

∣∣∣∣∣

= K(a, b, c, q)
∞∑

n=0

∣∣∣∣∣∣∣∣
∞∑

r,s=0
(r,s)�=(0,0)

(q/a)r(c/b)sa
rbsqn(r+s)

(q)r(q)s

∣∣∣∣∣∣∣∣
≤ K(a, b, c, q)

∞∑
n=0

|q|n
∞∑

r,s=0
(r,s)�=(0,0)

(−|q/a|; |q|)r(−|c/b|; |q|)s|a|r|b|s
(|q|; |q|)r(|q|; |q|)s
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=
K(a, b, c, q)

1 − |q|

∞∑
r,s=0

(r,s)�=(0,0)

(−|q/a|; |q|)r(−|c/b|; |q|)s|a|r|b|s
(|q|; |q|)r(|q|; |q|)s

< ∞,

where in the penultimate line we used the fact that |q|n(r+s−1) ≤ 1, since
r + s ≥ 1. This then proves that condition (7.3.1) is satisfied.

To prove (7.3.2), we first note that if |q| < 1, then limn→∞ nqn = 0. Hence,

lim
n→∞

n(α − αn) = lim
n→∞

nqn (a)∞(b)∞
(q)∞(c)∞

×

⎛
⎜⎜⎝

∞∑
r,s=0

(r,s)�=(0,0)

(q/a)r(c/b)sa
rbsqn(r+s−1)

(q)r(q)s

⎞
⎟⎟⎠ .

Now, the expression inside parentheses above is bounded in absolute value,
since we showed in our proof above that condition (7.3.1) holds. Since
limn→∞ nqn = 0, we see that we have shown that condition (7.3.2) is valid.

Hence, applying Theorem 7.3.1 with the value of αn given in (7.3.4) and
using Heine’s transformation (1.2.1) with h = 1, we find that

∞∑
n=0

(
(a)∞(b)∞
(q)∞(c)∞

− (a)n(b)n

(q)n(c)n

)
= lim

z→1−

d

dz
(1 − z)

∞∑
n=0

(a)n(b)n

(q)n(c)n
zn

= lim
z→1−

d

dz

(b)∞(az)∞
(c)∞(qz)∞

(
1 +

∞∑
n=1

(c/b)n(z)nbn

(q)n(az)n

)

=
(b)∞(a)∞
(c)∞(q)∞

( ∞∑
n=1

qn

1 − qn
−

∞∑
n=0

aqn

1 − aqn

)

− (b)∞(a)∞
(c)∞(q)∞

∞∑
n=1

(c/b)nbn

(a)n(1 − qn)
,

as desired. ��

We now come to three entries in the middle of page 14 of the lost notebook.
The first of these is perhaps more appropriate for Chapter 1; however, it would
be unfortunate to separate it from its central relationship to the remaining
two entries in this section.

Entry 7.3.1 (p. 14). We have

∞∑
n=0

qn(n+1)/2

(−q)n
= 1 + q

∞∑
n=0

(−1)n(q)nqn. (7.3.5)

The function defined in this entry is quite remarkable. The coefficient of
qn is equal to the difference of the number of partitions of n into distinct parts
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with even rank and the number of partitions of n into distinct parts with odd
rank. In [32], we further discuss this function when we examine Ramanujan’s
contributions to ranks and cranks in his lost notebook. It has been shown
[34] that almost all of the coefficients in the power series expansion of this
function are equal to 0; however, every integer appears infinitely often as a
coefficient in the power series. A charming introduction to such phenomena
has been provided by F.J. Dyson [148].

Proof. Applying (1.2.9) with a = −q/τ , b = q, c = xq, and t = τ , we find
that

∞∑
n=0

qn(n+1)/2

(xq)n
= lim

τ→0

∞∑
n=0

(−q/τ)n(q)nτn

(q)n(xq)n

= (1 − x)
∞∑

n=0

(−q/x)nxn

= 1 +
∞∑

n=1

(−q/x)nxn −
∞∑

n=1

(−q/x)n−1x
n

= 1 +
∞∑

n=1

(−q/x)n−1x
nqn/x

= 1 +
∞∑

n=0

(−q/x)nxnqn+1.

If we now set x = −1, the desired result follows. ��

Entry 7.3.2 (p. 14). If S := (−q)∞, then

∞∑
n=0

qn(n+1)/2

(−q)n
= 2

(
S

2
+

∞∑
n=0

(S − (−q)n) − S

∞∑
n=1

qn

1 − qn

)
.

Proof. In Theorem 7.3.2, set t = −1 and let a tend to 0 to deduce that

2(−q)∞ − 1 + 2
∞∑

n=1

((−q)∞ − (−q)n−1)

=
∞∑

n=1

qn(n+1)/2

(−q)n
+ 2(−q)∞

( ∞∑
n=1

qn

1 − qn
+

1
2

)
,

or, equivalently,

S + 2
∞∑

n=0

(S − (−q)n) − 2S
∞∑

n=1

qn

1 − qn
=

∞∑
n=0

qn(n+1)/2

(−q)n
,

as desired. ��
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Entry 7.3.3 (p. 14). Let S := 1/(q; q2)∞. Then

∞∑
n=0

qn(n+1)/2

(−q; q)n
= 2

(
S

2
+

∞∑
n=0

(
S − 1

(q; q2)n+1

))
− 2S

∞∑
n=1

q2n

1 − q2n
.

Proof. In Theorem 7.3.3, replace q by q2, then set a = q2, b = 0, and c = q3,
and lastly multiply both sides by 1/(1 − q). Consequently,

∞∑
n=0

(
S − 1

(q; q2)n+1

)
=

1
(q; q2)∞

∞∑
n=1

(−1)n−1qn2+2n

(q2; q2)n(1 − q2n)

=
1

(q; q2)∞

∞∑
n=1

(−1)n−1qn2+2n ((1 − q−n) + q−n)
(q2; q2)n(1 − q2n)

=
1

(q; q2)∞

( ∞∑
n=1

(−1)nqn2+n

(q2; q2)n(1 + qn)

+
∞∑

n=1

(−1)n−1qn2+n

(q2; q2)n(1 − q2n)

)

=
1

2(q; q2)∞
lim
τ→0

3φ2

(
q/τ, q/τ, −1

−q, −q
; q,−τ2

)

+
1

(q; q2)∞

(
−1

2
+

∞∑
n=1

q2n

1 − q2n

)
,

which can be deduced from (1.3.1) or which can be found in N.J. Fine’s book
[149, p. 14, Equation (12.42)]. Providing the details for the former derivation,
in (1.3.1), we replace q by q2, set a = z and c = zq2, and let b → ∞ to find
that ∞∑

n=1

(−1)n(z; q2)nqn(n+1)

(q2; q2)n(zq2; q2)n
=

(q2; q2)∞
(zq2; q2)∞

. (7.3.6)

Differentiate both sides of (7.3.6) with respect to z and set z = 1 to deduce
that ∞∑

n=1

(−1)n−1qn(n+1)

(q2; q2)n(1 − q2n)
=

∞∑
n=1

q2n

1 − q2n
.

Next, we apply (2.1.1) with a = b = q/τ , c = −1, and d = e = −q to the far
right side above and deduce that

∞∑
n=0

(
S − 1

(q; q2)n+1

)
=

1
2(q; q2)∞

lim
τ→0

1
(−q; q)∞

3φ2

(
q/τ, −τ, q
−q, −qτ

; q,−τ

)

+
1

(q; q2)∞

(
−1

2
+

∞∑
n=1

q2n

1 − q2n

)
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=
1
2

∞∑
n=0

qn(n+1)/2

(−q; q)n
+

1
(q; q2)∞

(
−1

2
+

∞∑
n=1

q2n

1 − q2n

)
.

Multiplying throughout by 2, we obtain a result equivalent to the asserted
identity. ��

Theorems 7.3.2 and 7.3.3 and Entries 7.3.2 and 7.3.3 are also discussed
in Ono’s monograph [224, pp. 168–174]. Further identities arising from The-
orems 7.3.2 and 7.3.3 can be found in [224]. R. Chapman [121] has devised
combinatorial proofs of several of these identities. W.Y.C. Chen and K.Q. Ji
[123] have devised beautiful combinatorial proofs of the last two entries.

7.4 Innocents Abroad

In order to prove the two results listed in Entry 7.4.1 below, we must collect
a number of esoteric results. Of these, the three identities for very well-poised
10φ9’s seem especially as though they ought to be unnecessary.

Lemma 7.4.1. For each nonnegative integer m,

(q; q2)m

2m∑
n=0

(−1)n

(α; q)n(q; q)2m−n
=

m∑
n=0

(−1)nqn2

(q2; q2)m−n(αq; q2)n
. (7.4.1)

The case α = 0 appears as Lemma 6.5.2 in Chapter 6. The case α = q
reduces easily upon the use of (1.7.3) to a famous formula of Gauss for the
Gaussian polynomials. This formula was used by Gauss [152] in his famous
elementary evaluation of the quadratic Gauss sum. For further details, see
the book of either H. Rademacher [232, pp. 85–88] or Berndt, R.J. Evans, and
K.S. Williams [72, pp. 20–24].

Proof. We set

Lm(α) := (q; q2)m

2m∑
n=0

(−1)n

(α; q)n(q; q)2m−n
, (7.4.2)

Rm(α) :=
m∑

n=0

(−1)nqn2

(q2; q2)m−n(αq; q2)n
. (7.4.3)

Our lemma follows immediately by mathematical induction once we prove
that each of Lm(α) and Rm(α) satisfies the following initial conditions and
recurrences:

f0(α) = 1, (7.4.4)

(1 − α)fm+1(α) − 1 − q2m+1

1 − αq
fm(αq2) =

q2m+2 − α

(q2; q2)m+1
. (7.4.5)
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Clearly, R0(α) = L0(α) = 1; so (7.4.4) holds for each of Lm(α) and Rm(α).
Next,

Lm+1(α) − 1 − q2m+1

(1 − α)(1 − αq)
Lm(αq2)

= (q; q2)m+1

(
2m+2∑
n=0

(−1)n

(α; q)n(q; q)2m−n+2
−

2m∑
n=0

(−1)n

(α; q)n+2(q; q)2m−n

)

= (q; q2)m+1

(
2m∑

n=−2

(−1)n

(α; q)n+2(q; q)2m−n
−

2m∑
n=0

(−1)n

(α; q)n+2(q; q)2m−n

)

= (q; q2)m+1

(
1

(q; q)2m+2
− 1

(1 − α)(q; q)2m+1

)

=
(q; q2)m+1

(1 − α)(q; q)2m+2

(
(1 − α) − (1 − q2m+2)

)

=
q2m+2 − α

(1 − α)(q2; q2)m+1
.

Thus, (7.4.5) holds for Lm(α).
Finally,

(1 − α)Rm+1(α) − Rm(αq2)
1 − αq

=
m+1∑
n=0

(−1)nqn2

(q2; q2)m+1−n(αq; q2)n

(
1 − α − 1 − q2m+2−2n

1 − αq2n+1

)

=
m+1∑
n=0

(−1)nqn2
(q2m+2−2n − αq2n+1 + α2q2n+1 − α)
(q2; q2)m+1−n(αq; q2)n+1

=
q2m+2 − α

(q2; q2)m+1
− αq

(1 − αq)(q2; q2)m

+
m+1∑
n=1

(−1)nqn2
(q2m+2−2n − αq2n+1 + α2q2n+1 − α)
(q2; q2)m+1−n(αq; q2)n+1

=
q2m+2 − α

(q2; q2)m+1
− αq

(1 − αq)(q2; q2)m

+
m+1∑
n=1

(−1)nqn2 (
q2m+2−2n(1 − αq2n+1)

)
(q2; q2)m+1−n(αq; q2)n+1

+
m+1∑
n=1

(−1)nqn2
(αq2m+3 − αq2n+1 + α2q2n+1 − α)
(q2; q2)m+1−n(αq; q2)n+1

=
q2m+2 − α

(q2; q2)m+1
− q2m+1Rm(αq2)

1 − αq
+
{
− αq

(1 − αq)(q2; q2)m
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+
m+1∑
n=1

(−1)nqn2
(αq2m+3 − αq2n+1 + α2q2n+1 − α)
(q2; q2)m+1−n(αq; q2)n+1

}
.

Consequently, to show that Rn(α) satisfies (7.4.5), we need only show that
the expression above inside the curly brackets is identically equal to 0. To that
end,

− αq

(1 − αq)(q2; q2)m
+

m+1∑
n=1

(−1)nqn2
(αq2m+3 − αq2n+1 + α2q2n+1 − α)
(q2; q2)m+1−n(αq; q2)n+1

= − αq

(1 − αq)(q2; q2)m

+
m+1∑
n=1

(−1)nqn2
(−αq2n+1(1 − q2m−2n+2) − α(1 − αq2n+1))

(q2; q2)m+1−n(αq; q2)n+1

= −α

m∑
n=0

(−1)nq(n+1)2

(q2; q2)m−n(αq; q2)n+1
− α

m+1∑
n=1

(−1)nqn2

(q2; q2)m+1−n(αq; q2)n

= −α
m∑

n=0

(−1)nq(n+1)2

(q2; q2)m−n(αq; q2)n+1
+ α

m∑
n=0

(−1)nq(n+1)2

(q2; q2)m−n(αq; q2)n+1

= 0.

��

Lemma 7.4.2. For each positive integer m,

(q; q2)m

2m−1∑
n=0

(−1)n

(q; q)n(α; q)2m−1−n
=
(

1 − α

q

) m∑
n=1

(−1)nqn2

(q2; q2)m−n(α; q2)n
.

Proof. Following in the wake of Lemma 7.4.1, we see that

(
1 − α

q

) 2m−1∑
n=0

(−1)n

(q; q)n(α/q; q)2m−n
=
(

1 − α

q

)(
Lm(α/q)
(q; q2)m

− 1
(q; q)2m

)

=
(

1 − α

q

)(
Rm(α/q)
(q; q2)m

− 1
(q; q)2m

)

=
1 − α/q

(q; q2)m

m∑
n=1

(−1)nqn2

(q2; q2)m−n(α; q2)n
,

where we have used the definitions of Lm(α) and Rm(α), given in (7.4.2)
and (7.4.3), respectively, and where we have appealed to Lemma 7.4.1. This
completes the proof. ��

In addition to these two lemmas, we require three identities for the function
10φ9 (see (2.1.2) for this notation). The first two were given by W.N. Bailey
[41, equations (6.1), (6.3)] and are given by
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lim
N→∞ 10φ9

(
a, q

√
a,−q

√
a, b, r1,−r1, r2,−r2, q

−N ,−q−N

√
a,−√

a,
aq

b
,
aq

r1
,−aq

r1
,
aq

r2
,−aq

r2
, aqN+1,−aqN+1; q,−

a3q2N+3

br2
1r

2
2

)

=
(a2q2; q2)∞(a2q2/(r2

1r
2
2); q

2)∞
(a2q2/r2

1; q2)∞(a2q2/r2
2; q2)∞

×
∞∑

n=0

(r2
1; q

2)n(r2
2; q

2)n(−aq/b; q)2n

(q2; q2)n(a2q2/b2; q2)n(−aq; q)2n

(
a2q2

r2
1r

2
2

)n

(7.4.6)

and

lim
N→∞ 10φ9

⎛
⎝a, q2

√
a,−q2

√
a, p1, p1q, p2, p2q, f, q−2N , q−2N+1

√
a,−√

a,
aq2

p1
,
aq

p1
,
aq2

p2
,
aq

p2
,
aq2

f
, aq2N+2, aq2N+1; q

2,
a3q4N+3

p2
1p

2
2f

⎞
⎠

=
(aq; q)∞(aq/(p1p2); q)∞
(aq/p1; q)∞(aq/p2; q)∞

∞∑
n=0

(p1; q)n(p2; q)n(aq/f ; q2)n

(q; q)n(aq; q2)n(aq/f ; q)n

(
aq

p1p2

)n

.

(7.4.7)

The third is the case k = 3 of a generalization [17, Theorem 4] of equation
(12.2.1) of our first book [31, p. 262], namely,

10φ9

(
a, q

√
a,−q

√
a, b1, c1, b2, c2, b3, c3, q

−N

√
a,−√

a,
aq

b1
,
aq

c1
,
aq

b2
,
aq

c2
,
aq

b3
,
aq

c3
, aqN+1; q,

a3qN+3

b1b2b3c1c2c3

)

=
(aq; q)N (aq/(b3c3); q)N

(aq/b3; q)N (aq/c3; q)N
(7.4.8)

×
∞∑

m1,m2=0

(aq/(b1c1); q)m1(aq/(b2c2); q)m2(b2; q)m1(c2; q)m1

(q; q)m1(q; q)m2(aq/b1; q)m1(aq/c1; q)m1

× (b3; q)m1+m2(c3; q)m1+m2(q
−N ; q)m1+m2(aq)m1qm1+m2

(aq/b2; q)m1+m2(aq/c2; q)m1+m2(b3c3q−N/a; q)m1+m2(b2c2)m1
.

Entry 7.4.1 (p. 25). We have

∞∑
n=0

(−1)nqn(n+1)/2

(−q; q)2n
=

∞∑
n=0

(−q)n(n+1)/2

(−q2; q2)n
− 2

∞∑
n=1

(−1)nq2n2

(−q; q2)2n
, (7.4.9)

ϕ(−q)
∞∑

n=0

qn(n+1)/2

(q2; q2)n
=

∞∑
n=0

(−q)n(n+1)/2

(−q2; q2)n
+ 2

∞∑
n=1

(−1)nq2n2

(−q; q2)2n
. (7.4.10)

We follow closely the proof in [23]. Unfortunately, this is currently the only
known proof.

Proof. Instead of proving each of these formulas independently, we prove the
following two formulas:
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(q; q)∞
(−q; q)∞

∞∑
n=0

qn(n+1)/2

(q2; q2)n
+

∞∑
n=0

(−1)nqn(n+1)/2

(−q; q)2n
= 2

∞∑
n=0

(−q)n(n+1)/2

(−q2; q2)n
,

(7.4.11)

(q; q)∞
(−q; q)∞

∞∑
n=0

qn(n+1)/2

(q2; q2)n
−

∞∑
n=0

(−1)nqn(n+1)/2

(−q; q)2n
= 4

∞∑
n=1

(−1)nq2n2

(−q; q2)2n
. (7.4.12)

To obtain (7.4.9) from the latter two equalities, merely subtract (7.4.12)
from (7.4.11) and divide both sides by 2. To obtain (7.4.10), add (7.4.11) and
(7.4.12), recall (1.4.9), and divide the result by 2.

We now prove (7.4.11). Using (1.2.4) twice, setting N = m + n, invok-
ing Lemma 7.4.1, inverting the order of summation on N and j below, and
replacing N by N + j, we may write the left-hand side of (7.4.11) as

1
(−q; q)∞

{ ∞∑
m=0

qm(m+1)/2

(−q; q)m
(qm+1; q)∞ +

∞∑
m=0

(−1)mqm(m+1)/2

(−q; q)m
(−qm+1; q)∞

}

=
1

(−q; q)∞

∞∑
m=0

∞∑
n=0

qm(m+1)/2+n(n+1)/2+mn ((−1)n + (−1)m)
(−q; q)m(q; q)n

=
1

(−q; q)∞

∞∑
N=0

qN(N+1)/2
N∑

n=0

(
(−1)n + (−1)N−n

)
(−q; q)N−n(q; q)n

=
2

(−q; q)∞

∞∑
N=0

qN(2N+1)
2N∑
n=0

(−1)n

(−q; q)2N−n(q; q)n

=
2

(−q; q)∞

∞∑
N=0

qN(2N+1)

(q; q2)N

N∑
j=0

(−1)jqj2

(q2; q2)N−j(−q2; q2)j

=
2

(−q; q)∞

∞∑
j=0

∞∑
N=0

(−1)jq(N+j)(2N+2j+1)qj2

(−q2; q2)j(q; q2)N+j(q2; q2)N

=
2

(−q; q)∞

∞∑
j=0

(−1)jq3j2+j

(−q2; q2)j(q; q2)j

∞∑
N=0

q2N2+N+4Nj

(q2; q2)N (q2j+1; q2)N

=:
2

(−q; q)∞

∞∑
j=0

(−1)jq3j2+j

(−q2; q2)j(q; q2)j
S1(j). (7.4.13)

We now transform S1(j) by rewriting it as a limit of a certain 2φ1 and using
the second Heine transformation, Corollary 1.2.4, to find that

S1(j) = lim
τ→0

2φ1

(
q/τ, q/τ
q2j+1 ; q2, τ2q4j+1

)

= lim
τ→0

(τq2j ; q2)∞(τq4j+2; q2)∞
(q2j+1; q2)∞(τ2q4j+1; q2)∞

2φ1

(
q2j+2, q/τ

τq4j+2 ; q2, τq2j

)
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=
1

(q2j+1; q2)∞

∞∑
n=0

(−1)n(q2j+2; q2)nqn2+2jn

(q2; q2)n
. (7.4.14)

Putting (7.4.14) in (7.4.13), simplifying with the use of Euler’s identity, and
lastly using (7.4.8), we deduce that

1
(−q; q)∞

{ ∞∑
m=0

qm(m+1)/2

(−q; q)m
(qm+1; q)∞ +

∞∑
m=0

(−1)mqm(m+1)/2

(−q; q)m
(−qm+1; q)∞

}

= 2
∞∑

j=0

∞∑
n=0

(−1)n+j(q2; q2)n+jq
(n+j)2+2j2+j

(q2; q2)j(q2; q2)n(−q2; q2)j

= 2(1 − q) lim
c1,b2,c2,b3,N→∞

10φ9

⎛
⎝ q, q5/2,−q5/2,−q, c1, b2, c2, b3, q

2, q−2N

q1/2,−q1/2,−q2,
q3

c1
,
q3

b2
,
q3

c2
,
q3

b3
, q, q2N+3; q

2,− q2N+6

c1b2c2b3

⎞
⎠

= 2(1 − q) lim
f,r2,N→∞

(7.4.15)

10φ9

⎛
⎝q, q5/2,−q5/2,−q, q2, f, r2,−r2q, q

−2N ,−q−2N+1

q1/2,−q1/2,−q2, q,
q3

f
,
q3

r2
,−q2

r2
, q2N+3,−q2N+2 ; q2,−q4N+4

fr2
2

⎞
⎠,

where we set c1 = f , b2 = r2, c2 = −r2q, and b3 = −q−2N+1. Observe that
each 10φ9 has five upper-row parameters tending to ∞ and five lower-row
parameters tending to 0, while the other parameters in both upper and lower
rows remain unchanged. Next, in (7.4.7), set p1 = q and let p2, f , and N tend
to ∞. Hence,

lim
p2,f,N→∞ 10φ9

×

⎛
⎝a, q2

√
a,−q2

√
a, q, q2, p2, p2q, f, q−2N , q−2N+1

√
a,−√

a, aq, a,
aq2

p2
,
aq

p2
,
aq2

f
, aq2N+2, aq2N+1 ; q2,

a3q4N+1

fp2
2

⎞
⎠

=
1

1 − a

∞∑
n=0

(−1)nanqn(n−1)/2

(aq; q2)n
. (7.4.16)

Replace q by −q in (7.4.16) and then set a = q. Lastly, replace the identity
that we thus obtain in (7.4.15) to conclude that

1
(−q; q)∞

{ ∞∑
m=0

qm(m+1)/2

(−q; q)m
(qm+1; q)∞ +

∞∑
m=0

(−1)mqm(m+1)/2

(−q; q)m
(−qm+1; q)∞

}

= 2
∞∑

n=0

(−q)n(n+1)/2

(−q2; q2)n
.



7.4 Innocents Abroad 171

This then finally concludes the proof of (7.4.11).
To complete the proof of Entry 7.4.1, we now prove (7.4.12). The steps

are like those in the proof of (7.4.11). Using (1.2.4) twice, setting N = m+n,
invoking Lemma 7.4.2 with α = −q, and inverting the order of summation on
N and j below, we may write the left-hand side of (7.4.12) as

1
(−q; q)∞

{ ∞∑
m=0

qm(m+1)/2

(−q; q)m
(qm+1; q)∞ −

∞∑
m=0

(−1)mqm(m+1)/2

(−q; q)m
(−qm+1; q)∞

}

=
1

(−q; q)∞

∞∑
m=0

∞∑
n=0

qm(m+1)/2+n(n+1)/2+mn ((−1)n − (−1)m)
(−q; q)m(q; q)n

=
1

(−q; q)∞

∞∑
N=0

qN(N+1)/2
N∑

n=0

(
(−1)n − (−1)N−n

)
(−q; q)N−n(q; q)n

=
2

(−q; q)∞

∞∑
N=0

q(N+1)(2N+1)
2N+1∑
n=0

(−1)n

(−q; q)2N+1−n(q; q)n

=
4

(−q; q)∞

∞∑
N=0

q(N+1)(2N+1)

(q; q2)N+1

N∑
j=0

(−1)j+1q(j+1)2

(q2; q2)N−j(−q; q2)j+1

=
4

(−q; q)∞

∞∑
j=0

∞∑
N=0

(−1)j+1q(N+j+1)(2N+2j+1)q(j+1)2

(−q; q2)j+1(q; q2)N+j+1(q2; q2)N

=
4

(−q; q)∞

∞∑
j=0

(−1)j+1q3j2+5j+2

(−q; q2)j+1(q; q2)j+1

∞∑
N=0

q2N2+3N+4Nj

(q2; q2)N (q2j+3; q2)N

=:
4

(−q; q)∞

∞∑
j=0

(−1)j+1q3j2+5j+2

(−q; q2)j+1(q; q2)j+1
S2(j). (7.4.17)

As in the proof of (7.4.11), we transform S2(j) by rewriting it as a limit
of a certain 2φ1 and using the second Heine transformation, Corollary 1.2.4,
to find that

S2(j) = lim
τ→0

2φ1

(
q/τ, q/τ
q2j+3 ; q2, τ2q4j+3

)

= lim
τ→0

(τq2j+2; q2)∞(τq4j+4; q2)∞
(q2j+3; q2)∞(τ2q4j+3; q2)∞

2φ1

(
q2j+2, q/τ

τq4j+4 ; q2, τq2j+2

)

=
1

(q2j+3; q2)∞

∞∑
n=0

(−1)n(q2j+2; q2)nqn2+2jn+2n

(q2; q2)n
. (7.4.18)

Putting (7.4.18) in (7.4.17), employing (7.4.8), and using Euler’s identity, we
find that

1
(−q; q)∞

{ ∞∑
m=0

qm(m+1)/2

(−q; q)m
(qm+1; q)∞ −

∞∑
m=0

(−1)mqm(m+1)/2

(−q; q)m
(−qm+1; q)∞

}
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= 4
∞∑

j=0

∞∑
n=0

(−1)j+n+1(q2; q2)j+nq(n+j)2+2j2+3j+2+2(j+n)

(−q; q2)j+1(q2; q2)j(q2; q2)n

= −4q2(1 − q3)
1 + q

lim
c1,b2,c2,b3,N→∞

10φ9

⎛
⎝q3, q7/2,−q7/2,−q2, c1, b2, c2, b3, q

2, q−2N

q3/2,−q3/2, q3,−q3,
q5

c1
,
q5

b2
,
q5

c2
,
q5

b3
, q2N+5; q

2,− q2N+11

c1b2c2b3

⎞
⎠

= −4q2(1 − q3)
1 + q

lim
N,b,r2→∞

10φ9

⎛
⎝ q3, q7/2,−q7/2, b, q2,−q2, r2,−r2, q

−2N ,−q−2N

q3/2,−q3/2, q3,−q3,
q5

r2
,−q5

r2
,
q5

b
, q2N+5,−q2N+5; q

2,−q4N+11

br2
2

⎞
⎠

= −4q2(1 − q3)
1 + q

1
1 − q6

∞∑
n=0

(−1)nq2n2+4n

(−q5; q2)2n

= 4
∞∑

n=0

(−1)n−1q2(n+1)2

(−q; q2)2n+2

= 4
∞∑

n=1

(−1)nq2n2

(−q; q2)2n
, (7.4.19)

where in the antepenultimate line of (7.4.19), we applied (7.4.6) with q first
replaced by q2, then with a = q3 and r1 = q2, and lastly with b, r2, and N
tending to ∞. This finally completes the proof of (7.4.12). ��
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Theta Function Identities

8.1 Introduction

Theta function identities are ubiquitous in Ramanujan’s notebooks [243]; in
particular, see Berndt’s books [54] and [57] for several hundred such identities.
Theta function identities are also prominent in Ramanujan’s lost notebook
[244]. Several of these identities are intimately connected with the Rogers–
Ramanujan continued fraction, and so these were examined in Chapter 1 of
[31]. However, other chapters in [31] contain theta function identities, with
Chapters 4, 13, 15, and 17 being exceptionally fruitful sources. Readers hav-
ing read the first seven chapters of the present volume have seen how theta
functions make perhaps unexpected appearances in q-series identities. Read-
ers who continue to read the remainder of this volume will observe that theta
functions and their identities are inextricably intertwined with Eisenstein se-
ries. What is rewarding and refreshing about Ramanujan’s identities involving
theta functions is that he often discovers types of theta function identities
that were previously unknown to us. His identities are also frequently surpris-
ing, both in their forms and in their appearances with other mathematical
objects.

In this chapter, we offer some of these beautiful identities, most of which
were first proved by S.H. Son [266], [267]. Indeed, we follow precisely Son’s
beautiful proofs in [266] and [267] in the first two sections. For the convenience
of the reader, we begin by reviewing some relevant notation, definitions, and
theorems of Ramanujan that we need.

Ramanujan’s theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Perhaps the most important property of f(a, b) is the Jacobi triple product
identity.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 9, c© Springer Science+Business Media, LLC 2009
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Theorem 8.1.1 (Jacobi Triple Product Identity). For |ab| < 1,

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (8.1.1)

The three most important special cases of f(a, b) are defined by, in Ramanu-
jan’s notation,

ϕ(q) := f(q, q) =
∞∑

n=−∞
qn2

, (8.1.2)

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2, (8.1.3)

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞, (8.1.4)

where the last equality is Euler’s pentagonal number theorem, an easy conse-
quence of the Jacobi triple product identity.

We use the following three basic theorems [54, pp. 48, 34, 80] of Ra-
manujan. One of them is the quintuple product identity, which we previously
recorded in (3.1.2) and in Entry 3.1.1, and which we restate for convenience.

Theorem 8.1.2. Let Un = an(n+1)/2bn(n−1)/2 and Vn = an(n−1)/2bn(n+1)/2

for each integer n. Then

f(a, b) =
n−1∑
r=0

Urf

(
Un+r

Ur
,
Vn−r

Ur

)
. (8.1.5)

Theorem 8.1.3. For |ab| < 1 and each nonnegative integer n,

f(a, b) = an(n+1)/2bn(n−1)/2f
(
a(ab)n, b(ab)−n

)
. (8.1.6)

Theorem 8.1.4 (Quintuple Product Identity). For |λx3| < 1,

f(−λ2x3,−λx6) + xf(−λ,−λ2x9) =
f(−x2,−λx)f(−λx3)

f(−x,−λx2)
. (8.1.7)

The following theorem of Son [265], [31, p. 14, Lemma 1.2.4] is also needed.

Theorem 8.1.5. Let |ab| < 1, let j and k denote arbitrary integers, let p be
a prime, let ζ := exp(2πi/p), and let x = s, 0 ≤ s < p, be a solution of

(j + k)x + j ≡ 0 (mod p).

Then
p∏

n=1

f(−ζjna,−ζknb) (8.1.8)
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=

⎧⎪⎪⎨
⎪⎪⎩

fp(−as+1bs,−ap−s−1bp−s)f(−ap,−bp)
f(−ap(s+1)bps,−ap(p−s−1)bp(p−s))

, if j + k �≡ 0 (mod p),

fp(−ab)
f(−ap,−bp)
f(−apbp)

, if j + k ≡ 0 (mod p).

We also utilize an identity established to prove a formula in Ramanujan’s
notebooks [56, p. 143], [55].

Lemma 8.1.1.

f3(a3b6, a6b3) + a3f3(b3, a9b6) + b3f3(a3, a6b9)

=
f(a3, b3)f3(−ab)

f(−a3b3)
+ 3ab

f(a3, b3)f3(−a9b9)
f(−a3b3)

. (8.1.9)

If q = exp(−π
√

n), for some positive rational number n, the Ramanujan–
Weber class invariant Gn is defined by

Gn := 2−1/4q−1/24(−q; q2)∞. (8.1.10)

In his notebooks [243], Ramanujan recorded many values of class invariants;
see [57, Chapter 34] for proofs of most of these values.

Lastly, we record the famous Rogers–Ramanujan identities, which we have
previously recorded in (4.1.1) and (4.1.2).

Theorem 8.1.6. For |q| < 1,
∞∑

n=0

qn2

(q; q)n
=

1
(q; q5)∞(q4; q5)∞

and
∞∑

n=0

qn(n+1)

(q; q)n
=

1
(q2; q5)∞(q3; q5)∞

.

See Chapter 10 of [31] for Ramanujan’s discussion (and our discussion of
Ramanujan’s discussion) of these identities in his lost notebook.

8.2 Cubic Identities

It will be convenient to define

F0 : = f(a3b6, a6b3), (8.2.1)

F1 : = a f(b3, a9b6), (8.2.2)

F2 : = b f(a3, a6b9), (8.2.3)

and

ω : = exp(2πi/3).
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Lemma 8.2.1. For |ab| < 1,

F0 + F1 + F2 = f(a, b). (8.2.4)

Proof. In (8.1.5), let n = 3. Then apply (8.1.6) and thereby deduce (8.2.4).
��

Theorem 8.2.1. For |ab| < 1,

(
f(a3b6, a6b3) + a f(b3, a9b6)

)3

=
f(a3, b3)

f(a3, a6b9)
f3(a, a2b3) − b3 f3(a3, a6b9).

Proof. In (8.2.4), replace b by ωnb for n = 0, 1, 2, and then multiply the three
identities together. We therefore find that

(F0 + F1)3 + F 3
2 = f(a, b)f(a, ωb)f(a, ω2b) =

f(a3, b3)
f(a3, a6b9)

f3(a, a2b3),

by Theorem 8.1.5, with p = 3 and s = 0. Using (8.2.1)–(8.2.3), we complete
the proof. ��

The proof of the following theorem is similar.

Theorem 8.2.2. For |ab| < 1,

(
a f(b3, a9b6) + b f(a3, a6b9)

)3

=
f(a3, b3)

f(a3b6, a6b3)
f3(ab2, a2b) − f3(a3b6, a6b3).

Proof. In (8.2.4), replacing (a, b) by (ωna, ωnb) for n = 0, 1, 2, and then
multiplying the three resulting identities together, we deduce that

F 3
0 + (F1 + F2)3 = f(a, b)f(ωa, ωb)f(ω2a, ω2b)

=
f(a3, b3)

f(a3b6, a6b3)
f3(ab2, a2b),

by Theorem 8.1.5, with p = 3 and s = 1. Again, using the definitions (8.2.1)–
(8.2.3), we complete the proof. ��

Theorem 8.2.3. For |ab| < 1,

f3(ab2, a2b) − b f3(a, a2b3) =
f(−b2,−a3b)

f(b, a3b2)
f3(−ab).

Proof. In (8.1.7), replace (λ, x) by (−a,−ωnb1/3) for n = 0, 1, 2, and then
multiply the three resulting identities together to deduce that

f3(ab2, a2b) − b f3(a, a2b3) =
2∏

n=0

f(−ω2nb2/3,−aωnb1/3)f(−ab)
f(−ωnb1/3,−aω2nb2/3)

. (8.2.5)
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Applying Theorem 8.1.5 twice, we find that the right side of (8.2.5) is equal
to

f(−b2,−a3b)
f(b, a3b2)

f3(−ab),

which yields the desired result. ��

We now use the results quoted or established above to prove some results
on pages 54 and 48 in Ramanujan’s lost notebook [244].

Entry 8.2.1 (p. 54). Let A := f(−q7,−q8) and B := q f(−q2,−q13). Then

A + B =
f(−q2,−q3)
f(−q,−q4)

f(−q5), (8.2.6)

A − B = f(−q2/3,−q) + q2/3f(−q3,−q12), (8.2.7)

A3 + B3 =
f(−q6,−q9)
f(−q3,−q12)

f3(−q5), (8.2.8)

(A − B)3 = f(−q2,−q3)
f3(−q,−q4)
f(−q3,−q12)

+ q2 f3(−q3,−q12). (8.2.9)

Proof. The identities (8.2.6)–(8.2.8) can be found in Ramanujan’s second
notebook [243]. More precisely, (8.2.6) and (8.2.7) are Entries 10(i), (iii), re-
spectively, in Chapter 20; see [54, pp. 379–380] for statements and proofs.
Also, (8.2.8) is identical to an identity on page 321 in Ramanujan’s second
notebook; see Entry 36(i) in [56, p. 188]. Letting a = −q and b = −q2/3 in
Theorem 8.2.1 yields (8.2.9). ��

After stating Entry 8.2.1, Ramanujan writes “A3 − B3 see note.” Either
Ramanujan never wrote this note, or if he did, it has not been preserved.

Entry 8.2.2 (p. 54). Let A := f(−q4,−q11) and B := q f(−q,−q14). Then
for |q| < 1,

A − B =
f(−q,−q4)
f(−q2,−q3)

f(−q5), (8.2.10)

A + B = − 1
q1/3

{
f(−q1/3,−q4/3) − f(−q6,−q9)

}
, (8.2.11)

A3 − B3 =
f(−q3,−q12)
f(−q6,−q9)

f3(−q5), (8.2.12)

and

(A + B)3 = −1
q

{
f(−q,−q4)

f3(−q2,−q3)
f(−q6,−q9)

− f3(−q6,−q9)
}

. (8.2.13)
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Proof. The identities (8.2.10) and (8.2.11) can be found as Entries 10(ii), (iv)
in Chapter 20 of Ramanujan’s second notebook [243]; see [54, pp. 379–380].
The identity (8.2.12) is also in Ramanujan’s second notebook; see Entry 36(ii)
in [56, p. 188]. Putting a = −q4/3 and b = −q1/3 in Theorem 8.2.2, we deduce
(8.2.13). ��

On page 54, Ramanujan wrote “A3 +B3 see note.” However, as before, he
apparently did not write this note, or, if he did, it has been lost.

The next two identities are connected with what Son has called Ramanu-
jan’s theorems on circular summation found on page 54 in the lost notebook.

Entry 8.2.3 (p. 54). For |ab| < 1,

f3(ab2, a2b) + af3(b, a3b2) + bf3(a, a2b3)

= f(a, b)
{

f9(−q)
f3(−q3)

+ 27q
f9(−q3)
f3(−q)

}1/3

= f(a, b)
{

ψ3(q)
ψ(q3)

+ 3q
ψ3(q3)
ψ(q)

}
, (8.2.14)

where q = ab.

Proof. In (8.1.9), replace (a, b) by (a1/3, b1/3) to arrive at

f3(ab2, a2b) + af3(b, a3b2) + bf3(a, a2b3)

=
f(a, b)q1/3f3(−q3)

f(−q)

(
f3(−q1/3)

q1/3f3(−q3)
+ 3
)

. (8.2.15)

By Entry 1(iv) in [54, p. 345],

f3(−q1/3)
q1/3f3(−q3)

+ 3 =
{

f12(−q)
qf12(−q3)

+ 27
}1/3

. (8.2.16)

By Entry 3(i) in [54, p. 460],

{
f9(−q)
f3(−q3)

+ 27q
f9(−q3)
f3(−q)

}1/3

=
ψ3(q)
ψ(q3)

+ 3q
ψ3(q3)
ψ(q)

. (8.2.17)

We now see that these three identities (8.2.15)–(8.2.17) establish (8.2.14). ��

On page 48, Ramanujan presented two further cubic identities, (8.2.18)–
(8.2.19) below. These identities give new representations for the Rogers–
Ramanujan functions.

Entry 8.2.4 (p. 48). For |q| < 1, let

U :=
∞∑

n=0

q3n2

(q3; q3)n
and V :=

∞∑
n=0

q3n(n+1)

(q3; q3)n
.
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Then

f3(−q13,−q17) + q3f3(−q7,−q23) = Uf(−q6)
f3(−q10)
f(−q30)

(8.2.18)

and

f3(−q11,−q19) + q9f3(−q,−q29) = V f(−q6)
f3(−q10)
f(−q30)

. (8.2.19)

Proof. By the Rogers–Ramanujan identities in Theorem 8.1.6,

U =
1

(q3; q15)∞(q12; q15)∞
. (8.2.20)

In Theorem 8.2.3, let a = −q7 and b = −q3. Then

f3(−q13,−q17) + q3f3(−q7,−q23) =
f(−q6,−q24)
f(−q3,−q27)

f3(−q10). (8.2.21)

Employing the Jacobi triple product identity (8.1.1), (8.1.4), and (8.2.20), we
find that

f(−q6,−q24)
f(−q3,−q27)

f3(−q10)

=
(q6; q30)∞(q24; q30)∞f3(−q10)

(q3; q30)∞(q27; q30)∞

=
(q6; q30)∞(q12; q30)∞(q18; q30)∞(q24; q30)∞(q30; q30)∞f3(−q10)

(q3; q30)∞(q12; q30)∞(q18; q30)∞(q27; q30)∞(q30; q30)∞

=
(q6; q6)∞f3(−q10)

(q3; q15)∞(q12; q15)∞f(−q30)

= U
f(−q6)f3(−q10)

f(−q30)
.

Using this last calculation in (8.2.21), we reach the desired result (8.2.18).
The proof of (8.2.19) is similar to that of (8.2.18). By Theorem 8.1.6,

V =
1

(q6; q15)∞(q9; q15)∞
. (8.2.22)

In Theorem 8.2.3, let a = −q and b = −q9. Then

f3(−q11,−q19) + q9f3(−q,−q29) =
f(−q12,−q18)
f(−q9,−q21)

f3(−q10). (8.2.23)

By the Jacobi triple product identity (8.1.1), (8.1.4), and (8.2.22),

f(−q12,−q18)
f(−q9,−q21)

f3(−q10)
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=
(q12; q30)∞(q18; q30)∞f3(−q10)

(q9; q30)∞(q21; q30)∞

=
(q6; q30)∞(q12; q30)∞(q18; q30)∞(q24; q30)∞(q30; q30)∞f3(−q10)

(q6; q30)∞(q9; q30)∞(q21; q30)∞(q24; q30)∞(q30; q30)∞

=
(q6; q6)∞f3(−q10)

(q6; q15)∞(q9; q15)∞f(−q30)

= V
f(−q6)f3(−q10)

f(−q30)
.

Using this last identity in (8.2.23), we complete the proof of (8.2.19). ��

Son [266] used results in this section to derive some new modular equations.

8.3 Septic Identities

On page 206 in his lost notebook [244], Ramanujan recorded the following
identities.

Entry 8.3.1 (p. 206). Let

ϕ(q1/7)
ϕ(q7)

= 1 + u + v + w. (8.3.1)

Then

p := uvw = 8q2 (−q; q2)∞
(−q7; q14)7∞

(8.3.2)

and
ϕ8(q)
ϕ8(q7)

− (2 + 5p)
ϕ4(q)
ϕ4(q7)

+ (1 − p)3 = 0. (8.3.3)

Furthermore,

u =
(

α2p

β

)1/7

, v =
(

β2p

γ

)1/7

, and w =
(

γ2p

α

)1/7

, (8.3.4)

where α, β, and γ are roots of the equation

ξ3 + 2ξ2

(
1 + 3p − ϕ4(q)

ϕ4(q7)

)
+ ξp2(p + 4) − p4 = 0. (8.3.5)

For example,

ϕ(e−7π
√

7) = 73/4ϕ(e−π
√

7)
{

1 + (−)2/7 + (−)2/7 + (−)2/7
}

. (8.3.6)
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Although u, v, and w are not clearly defined in the claims above, their
definitions can be deduced from Entry 17(iii) of Chapter 19 of Ramanujan’s
second notebook [54, p. 303]. In examining (8.3.1) and Entry 17(iii), we see
that we are led to define

u := 2q1/7f(q5, q9)/ϕ(q7), (8.3.7)

v := 2q4/7f(q3, q11)/ϕ(q7), (8.3.8)

w := 2q9/7f(q, q13)/ϕ(q7). (8.3.9)

In (8.3.6), Ramanujan might have attempted to evaluate the quotient

ϕ(e−π
√

7)
ϕ(e−7π

√
7)

, (8.3.10)

by using the identities (8.3.1)–(8.3.5). Recall that the class invariant Gn is
defined by (8.1.10). Since G7 = 21/4 [57, p. 189], the value of G73 could easily
be evaluated by a routine calculation if the quotient (8.3.10) were known. It
is unclear why Ramanujan did not record the missing terms in (8.3.6). Did
he not record them because they were inelegant? Did Ramanujan conjecture
the existence of three quantities that would ensure an identity of the type
(8.3.6)? We have been unsuccessful in finding the three missing terms and
consequently cannot answer these questions.

In this section, our goal is to prove the identities (8.3.2)–(8.3.5). We employ
modular equations of degree seven, the Jacobi triple product identity, several
Lambert series identities, and the product formula for theta functions given
in Theorem 8.1.5.

In the sequel, the following three Lambert series identities are needed.

Lemma 8.3.1. For |q| < 1,

(i) ϕ4(q) = 1 + 8
∞∑

k=1

kqk

1 + (−q)k
,

(ii) ϕ6(q) = 1 − 4
∞∑

k=0

(−1)k(2k + 1)2q2k+1

1 − q2k+1
+ 16

∞∑
k=1

k2qk

1 + q2k
,

(iii) ϕ8(q) = 1 + 16
∞∑

k=1

k3qk

1 − (−q)k
.

For proofs of (i)–(iii), see [54, p. 114, Entry 8(ii)], [31, p. 396, Entry 18.2.2],
and [52, p. 139, Example (i)], respectively. See also [59, Chapter 3].

We recall some notation and definitions in the theory of modular equations
of degree n ≥ 2. Let β have degree n over α. Let

z1 := 2F1

(
1
2
,
1
2
; 1;α

)
and zn = 2F1

(
1
2
,
1
2
; 1;β

)
.
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We quote from Ramanujan’s catalogue of theta function evaluations in [54,
pp. 122, 124].

Lemma 8.3.2. If

q = exp

⎛
⎜⎜⎝−π

2F1

(
1
2
,
1
2
; 1; 1 − α

)

2F1

(
1
2
,
1
2
; 1;α

)
⎞
⎟⎟⎠ ,

then

ϕ(q) =
√

z1, (8.3.11)

ϕ(q7) =
√

z7, (8.3.12)

χ(q) = 21/6q1/24
(
α(1 − α)

)−1/24
, (8.3.13)

χ(q7) = 21/6q7/24
(
β(1 − β)

)−1/24
. (8.3.14)

For proofs of (8.3.11)–(8.3.14), see [54, pp. 122, 124].
The multiplier m of degree n is given by

m :=
ϕ2(q)
ϕ2(qn)

=
z1

zn
. (8.3.15)

Lemma 8.3.3. For |q| < 1,

1 − 4
∞∑

k=0

(−1)k(2k + 1)2q2k+1

1 − q2k+1
= ϕ6(q)(1 − α).

See [54, p. 138, Entry 17(vii)], where a proof can be found.

Lemma 8.3.4. If
t := (αβ)1/8,

then
(
(1 − α)(1 − β)

)1/8 = 1 − t, (8.3.16)

m − 7
m

= −(1 − 2t)3 − 5(1 − 2t), (8.3.17)

α

t
− 1 − α

1 − t
=

7
m

(
1 − t(1 − t)

)
. (8.3.18)

For a proof of (8.3.16), see [54, p. 314, Entry 19(i)]. Using (8.3.16) along
with [54, p. 315, Entry 19(viii); p. 314, Entry 19(iii)], we deduce (8.3.17) and
(8.3.18), respectively.

Throughout the remainder of this section, n = 7, and so m is the multiplier
of degree 7, β has degree 7 over α, and z1, z7, and t are defined as above.
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Lemma 8.3.5. For |q| < 1,

p = 8q2 (−q; q2)∞
(−q7; q14)7∞

= 8q2 χ(q)
χ7(q7)

= 4
(

β7(1 − β)7

α(1 − α)

)1/24

. (8.3.19)

Proof. By the Jacobi triple product identity (8.1.1), the equality

ϕ(q7) = f(q7, q7) = (−q7; q14)2∞(q14; q14)∞,

and (8.3.7)–(8.3.9), we find that

p = uvw =
8q2

ϕ3(q7)
f(q5, q9)f(q3, q11)f(q, q13)

f(q7, q7)
f(q7, q7)

=
8q2

ϕ4(q7)
(−q; q14)∞(−q3; q14)∞(−q5; q14)∞(−q7; q14)2∞

× (−q9; q14)∞(−q11; q14)∞(−q13; q14)∞(q14; q14)4∞.

Since

(−q; q2)∞ = (−q; q14)∞(−q3; q14)∞(−q5; q14)∞(−q7; q14)∞
× (−q9; q14)∞(−q11; q14)∞(−q13; q14)∞,

we can simplify the formula for p above to deduce that

p = 8q2 (−q; q2)∞
(−q7; q14)7∞

= 8q2 χ(q)
χ7(q7)

.

Using (8.3.13) and (8.3.14), we complete the proof of (8.3.19). ��

Note that we have also established (8.3.2).

Lemma 8.3.6. For |q| < 1,

1 − 2t =
1 − p

m
.

Proof. Using Lemma 8.3.5 and (8.3.16) in Entry 19 (ii) of [54, p. 314], we
complete the proof. ��

We are now ready to prove (8.3.3).

Theorem 8.3.1. Equality (8.3.3) is valid.

Proof. By (8.3.17) and Lemma 8.3.6, we find that

m − 7
m

= −
(

1 − p

m

)3

− 5
(

1 − p

m

)
.

Multiplying both sides by m3, we deduce that

m4 − (2 + 5p)m2 + (1 − p)3 = 0.

Thus, by (8.3.15), we complete the proof. ��
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Lemma 8.3.7. For |q| < 1,

ϕ4(q) = 1 + 8
∞∑

k=1

∞∑
n=1

(−1)(n−1)(k−1)k qnk.

Proof. By Lemma 8.3.1(i),

ϕ4(q) = 1 + 8
∞∑

k=1

kqk

1 + (−q)k

= 1 + 8
∞∑

k=1

kqk
∞∑

n=0

(−1)n(−q)nk

= 1 + 8
∞∑

k=1

∞∑
n=0

(−1)n(k+1)kq(n+1)k.

Replacing n by n − 1, we complete the proof. ��

For convenience, we define the operator M0, which collects the terms whose
exponents are integers.

Lemma 8.3.8. For |q| < 1,

M0

(
ϕ4(q1/7)

)
= 8ϕ4(q) − 7ϕ4(q7).

Proof. Let

Uk :=
∞∑

n=1

(−1)(n−1)(k−1)k (q1/7)nk.

By Lemma 8.3.7,

M0

(
ϕ4(q1/7)

)
= 1 + 8M0

( ∞∑
k=1

Uk

)

= 1 + 8M0

⎛
⎜⎜⎝

∞∑
k=1

k≡0 (mod 7)

Uk + · · · +
∞∑

k=1
k≡6 (mod 7)

Uk

⎞
⎟⎟⎠

=: 1 + 8(I0 + · · · + I6). (8.3.20)

In the sum with k ≡ 0 (mod 7), replace k by 7k to deduce that

I0 = M0

( ∞∑
k=1

∞∑
n=1

(−1)(n−1)(7k−1)(7k)(q1/7)n(7k)

)

= 7
∞∑

k=1

∞∑
n=1

(−1)(n−1)(k−1)kqnk. (8.3.21)
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For 1 ≤ j ≤ 6,

Ij = M0

( ∞∑
k=0

∞∑
n=1

(−1)(n−1)(7k+j−1)(7k + j)(q1/7)n(7k+j)

)

=
∞∑

k=0

∞∑
n=1

(−1)(7n−1)(7k+j−1)(7k + j)(q1/7)(7n)(7k+j)

=
∞∑

k=0

∞∑
n=1

(−1)(n−1)(7k+j−1)(7k + j)qn(7k+j). (8.3.22)

Define

I ′0 :=
∞∑

k=1

∞∑
n=1

(−1)(n−1)(7k−1)(7k)qn(7k). (8.3.23)

Then, by (8.3.22) and (8.3.23),

I1 + · · · + I6 + I ′0 =
∞∑

k=1

∞∑
n=1

(−1)(n−1)(k−1)kqnk. (8.3.24)

Employing (8.3.21), (8.3.24), and Lemma 8.3.7, we deduce that

I0 + · · · + I6 = 8
∞∑

k=1

∞∑
n=1

(−1)(n−1)(k−1)kqnk − I ′0 = ϕ4(q) − 1 − I ′0. (8.3.25)

Therefore, by (8.3.20), (8.3.25), (8.3.23), and Lemma 8.3.7,

M0

(
ϕ4(q1/7)

)
= 1 + 8(I0 + · · · + I6)

= 1 + 8(ϕ4(q) − 1 − I ′0)

= 8ϕ4(q) − 7 − 8I ′0

= 8ϕ4(q) − 7 − 8 · 7
∞∑

k=1

∞∑
n=1

(−1)(n−1)(k−1)k(q7)nk

= 8ϕ4(q) − 7ϕ4(q7),

which completes the proof. ��

Theorem 8.3.2. Let u, v, and w be defined by (8.3.7)–(8.3.9). Then

u3v + v3w + w3u = −2
(

1 + 3p − ϕ4(q)
ϕ4(q7)

)
.

Proof. By (8.3.1),

M0

((
ϕ(q1/7)
ϕ(q7)

)4
)

= M0

(
(1 + u + v + w)4

)
. (8.3.26)
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By Lemma 8.3.8,

M0

((
ϕ(q1/7)
ϕ(q7)

)4
)

= 8
ϕ4(q)
ϕ4(q7)

− 7. (8.3.27)

By the multinomial theorem and (8.3.2),

M0

(
(1 + u + v + w)4

)
= 4(u3v + v3w + w3u) + 24p + 1. (8.3.28)

Using (8.3.27) and (8.3.28) in (8.3.26), we deduce that

u3v + v3w + w3u = 2
(

ϕ4(q)
ϕ4(q7)

− 3p − 1
)

,

which is the desired result. ��

Lemma 8.3.9. For |q| < 1,

16m3α = 8m3 + (p + 20)m2 + 7(3p + 4)(p − 1).

Proof. If we solve the linear equation (8.3.18) for α, we find that

α = t

(
1 − 7

m
(t − 1)(t2 − t + 1)

)
.

By Lemma 8.3.6,

t =
m + p − 1

2m
,

and so

α =
1

16m5

(
8m5 + (8p + 13)m4 − 14(p − 1)2m2 − 7(p − 1)4

)
.

Thus, by the equality

7(p − 1)4 = 7(p − 1)(m4 − (2 + 5p)m2),

which is a reformulation of (8.3.3), we find that

α =
1

16m3

(
8m3 + (p + 20)m2 + 7(3p + 4)(p − 1)

)
,

which is the required result. ��

Theorem 8.3.3. For |q| < 1,

256
∞∑

k=1

k2qk

1 + q2k
= 8ϕ6(q) + (p + 20)ϕ4(q)ϕ2(q7) + 7(3p + 4)(p − 1)ϕ6(q7).
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Proof. By Lemma 8.3.3,

1 − 4
∞∑

k=0

(−1)k(2k + 1)2q2k+1

1 − q2k+1
= ϕ6(q)(1 − α).

Thus, by Lemma 8.3.1(ii),

16
∞∑

k=1

k2qk

1 + q2k
= ϕ6(q)α.

Applying Lemma 8.3.9, we arrive at

256
ϕ6(q7)

∞∑
k=1

k2qk

1 + q2k
= 16m3α = 8m3 + (p + 20)m2 + 7(3p + 4)(p − 1),

which is equivalent to the desired result. ��

Lemma 8.3.10. For |q| < 1,

ϕ6(q) = 1 − 4
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1) + 16
∞∑

k=0

∞∑
n=1

(−1)kn2qn(2k+1).

Proof. We shall see that the result follows readily from Lemma 8.3.1(ii). Now,

∞∑
k=0

(−1)k(2k + 1)2q2k+1

1 − q2k+1
=

∞∑
k=0

(−1)k(2k + 1)2q2k+1
∞∑

n=0

qn(2k+1)

=
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1) (8.3.29)

and
∞∑

k=1

k2qk

1 + q2k
=

∞∑
k=1

k2qk
∞∑

n=0

(−1)nq2nk

=
∞∑

k=1

∞∑
n=0

(−1)nk2qk(2n+1)

=
∞∑

k=0

∞∑
n=1

(−1)kn2qn(2k+1), (8.3.30)

after interchanging k and n and changing the order of summation. Substituting
(8.3.29) and (8.3.30) in Lemma 8.3.1(ii), we complete the proof. ��

Lemma 8.3.11. For |q| < 1,

M0

(
ϕ6(q1/7)

)
= 6(p + 20)ϕ4(q)ϕ2(q7) + 7(18p2 + 6p − 17)ϕ6(q7).
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Proof. For k ≥ 0, let

Uk : =
∞∑

n=1

(−1)k(2k + 1)2(q1/7)n(2k+1)

and

Vk : =
∞∑

n=1

(−1)kn2(q1/7)n(2k+1).

By Lemma 8.3.10,

M0

(
ϕ6(q1/7)

)
= 1 − 4M0

( ∞∑
k=0

Uk

)
+ 16M0

( ∞∑
k=0

Vk

)

= 1 − 4M0

⎛
⎜⎜⎝

∞∑
k=0

k≡ (mod 7)

Uk + · · · +
∞∑

k=0
k≡6 (mod 7)

Uk

⎞
⎟⎟⎠

+ 16M0

⎛
⎜⎜⎝

∞∑
k=0

k≡0 (mod 7)

Vk + · · · +
∞∑

k=0
k≡6 (mod 7)

Vk

⎞
⎟⎟⎠

=: 1 − 4(I0 + · · · + I6) + 16(J0 + · · · + J6). (8.3.31)

Since 2(7k + j) + 1 ≡ 0 (mod 7) when j = 3,

I3 =
∞∑

k=0

∞∑
n=1

(−1)7k+3
(
2(7k + 3) + 1

)2(q1/7)n(2(7k+3)+1)

= −72
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1). (8.3.32)

For j �= 3,

Ij = M0

( ∞∑
k=0

∞∑
n=1

(−1)7k+j
(
2(7k + j) + 1

)2(q1/7)n(2(7k+j)+1)

)

=
∞∑

k=0

∞∑
n=1

(−1)7k+j
(
2(7k + j) + 1

)2
qn(2(7k+j)+1). (8.3.33)

Define

I ′3 :=
∞∑

k=0

∞∑
n=1

(−1)7k+3
(
2(7k + 3) + 1

)2
qn(2(7k+3)+1)
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= −72
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2(q7)n(2k+1). (8.3.34)

Thus, by (8.3.33) and (8.3.34),

I0 + I1 + I2 + I ′3 + I4 + I5 + I6 =
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1). (8.3.35)

Using (8.3.32) and (8.3.35), we then find that

I0 + · · · + I6 = −48
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1) − I ′3.

Similarly,

J0 + · · · + J6 = 48
∞∑

k=0

∞∑
n=1

(−1)kn2qn(2k+1) − J ′
3,

where

J ′
3 := −72

∞∑
k=0

∞∑
n=1

(−1)kn2(q7)n(2k+1). (8.3.36)

Therefore, by (8.3.31),

M0

(
ϕ6(q1/7)

)
= 1 − 4(I0 + · · · + I6) + 16(J0 + · · · + J6)

= 1 + 4 · 48
∞∑

k=0

∞∑
n=1

(−1)k(2k + 1)2qn(2k+1) + 4I ′3

+ 16 · 48
∞∑

k=0

∞∑
n=1

(−1)kn2qn(2k+1) − 16J ′
3.

By two applications of Lemma 8.3.10, (8.3.34), and (8.3.36), we deduce that

M0

(
ϕ6(q1/7)

)
= 49ϕ6(q7) − 48ϕ6(q) + 2 · 16 · 48

∞∑
k=0

∞∑
n=1

(−1)kn2qn(2k+1).

(8.3.37)
Employing Theorem 8.3.3, we find that

2 · 16 · 48
∞∑

k=0

∞∑
n=1

(−1)kn2qn(2k+1) = 6 · 256
∞∑

n=1

n2qn

1 + q2n

= 6
(
8ϕ6(q) + (p + 20)ϕ4(q)ϕ2(q7) + 7(3p + 4)(p − 1)ϕ6(q7)

)
.

(8.3.38)

Thus, substituting (8.3.38) into (8.3.37), we complete the proof. ��
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Lemma 8.3.12. For |q| < 1,

ϕ8(q) = 1 + 16
∞∑

k=1

∞∑
n=1

(−1)(n−1)kk3 qnk.

Proof. By Lemma 8.3.1(iii),

ϕ8(q) = 1 + 16
∞∑

k=1

k3qk

1 − (−q)k

= 1 + 16
∞∑

k=1

k3qk
∞∑

n=0

(−q)nk

= 1 + 16
∞∑

k=1

∞∑
n=0

(−1)nkk3q(n+1)k.

Replacing n by n − 1, we complete the proof. ��

Lemma 8.3.13. For |q| < 1,

M0

(
ϕ8(q1/7)

)
= 344ϕ8(q) − 343ϕ8(q7).

Proof. For k ≥ 0, let

Uk :=
∞∑

n=1

(−1)(n−1)kk3 (q1/7)nk.

By Lemma 8.3.12,

M0

(
ϕ8(q1/7)

)
= 1 + 16M0

( ∞∑
k=1

Uk

)

= 1 + 16M0

⎛
⎜⎜⎝

∞∑
k=1

k≡0 (mod 7)

Uk + · · · +
∞∑

k=1
k≡6 (mod 7)

Uk

⎞
⎟⎟⎠

=: 1 + 16(I0 + · · · + I6). (8.3.39)

In the sum with k ≡ 0 (mod 7), replace k by 7k to obtain

I0 = M0

( ∞∑
k=1

∞∑
n=1

(−1)(n−1)(7k)(7k)3(q1/7)n(7k)

)

= 73
∞∑

k=1

∞∑
n=1

(−1)(n−1)kk3qnk. (8.3.40)
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For 1 ≤ j ≤ 6,

Ij = M0

( ∞∑
k=0

∞∑
n=1

(−1)(n−1)(7k+j)(7k + j)3(q1/7)n(7k+j)

)

=
∞∑

k=0

∞∑
n=1

(−1)(7n−1)(7k+j)(7k + j)3(q1/7)(7n)(7k+j)

=
∞∑

k=0

∞∑
n=1

(−1)(n−1)(7k+j)(7k + j)3qn(7k+j). (8.3.41)

Define

I ′0 :=
∞∑

k=1

∞∑
n=1

(−1)(n−1)(7k)(7k)3qn(7k)

= 73
∞∑

k=1

∞∑
n=1

(−1)(n−1)kk3(q7)nk. (8.3.42)

Thus, by (8.3.41) and (8.3.42),

I1 + · · · + I6 + I ′0 =
∞∑

k=1

∞∑
n=1

(−1)(n−1)kk3qnk. (8.3.43)

Using (8.3.40) and (8.3.43), we find that

I0 + · · · + I6 = 344
∞∑

k=1

∞∑
n=1

(−1)(n−1)kk3qnk − I ′0. (8.3.44)

Hence, by (8.3.39), (8.3.44), and (8.3.42),

M0

(
ϕ8(q1/7)

)
= 1 + 16(I0 + · · · + I6)

= 1 + 16

(
344

∞∑
k=1

∞∑
n=1

(−1)(n−1)kk3qnk − I ′0

)

= 344

(
1 + 16

∞∑
k=1

∞∑
n=1

(−1)(n−1)kk3qnk

)

− 343

(
1 + 16

∞∑
k=1

∞∑
n=1

(−1)(n−1)kk3(q7)nk

)

= 344ϕ8(q) − 343ϕ8(q7),

by Lemma 8.3.12. This completes the proof. ��

For convenience, we define
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X := u2v3 + v2w3 + w2u3, (8.3.45)

Y := uv5 + vw5 + wu5, (8.3.46)

Z := u7 + v7 + w7. (8.3.47)

Lemma 8.3.14. For |q| < 1,

10X + Y = p(m2 + 6p + 47).

Proof. By (8.3.1),

M0

((
ϕ(q1/7)
ϕ(q7)

)6
)

= M0

(
(1 + u + v + w)6

)
. (8.3.48)

By Lemma 8.3.11,

M0

((
ϕ(q1/7)
ϕ(q7)

)6
)

= 6(p + 20)m2 + 7(18p2 + 6p − 17). (8.3.49)

By the multinomial theorem and Theorem 8.3.2,

M0

(
(1 + u + v + w)6

)
= 6(uv5 + vw5 + wu5) + 90u2v2w2 + 60(u2v3 + v2w3 + w2u3)

+ 60(u3v + v3w + w3u) + 120uvw + 1

= 60X + 6Y + 90p2 − 120(3p + 1 − m2) + 120p + 1. (8.3.50)

Using (8.3.49), (8.3.50), and (8.3.2) in (8.3.48), we finish the proof. ��

Lemma 8.3.15. For |q| < 1,

14X − 7Y + Z = m4 − 14(p − 1)m2 + 49p2 − 42p − 15.

Proof. Let ζ := exp(2πi/7). Replacing q1/7 by ζq1/7 in (8.3.1), multiplying
together the seven identities, and recalling the definitions of u, v, and w in
(8.3.7)–(8.3.9), we find that

1
ϕ7(q7)

7∏
k=1

ϕ(ζq1/7) =
7∏

k=1

(
1 + ζku + ζ4kv + ζ9kw

)
. (8.3.51)

By Theorem 8.1.5 with a = b = q1/7, j = k = 1, s = 3, and p = 7,

1
ϕ7(q7)

7∏
k=1

ϕ(ζq1/7) =
ϕ8(q)
ϕ8(q7)

. (8.3.52)

Using computer algebra, we find that
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7∏
k=1

(
1 + ζku + ζ4kv + ζ9kw

)

= (u7 + v7 + w7) + 7uvw(u3v + v3w + w3u)

− 7(uv5 + vw5 + wu5) − 7u2v2w2

+ 14(u2v3 + v2w3 + w2u3)

− 7(u3v + v3w + w3u) + 14uvw + 1. (8.3.53)

By (8.3.51), (8.3.52), (8.3.53), (8.3.2), Theorem 8.3.2, the definitions of X, Y ,
and Z, and simplification, we complete the proof. ��

Lemma 8.3.16. For |q| < 1,

14(2p + 5)X + 21Y + Z = m4 + 14(p + 1)m2 + 28p3 + 105p2 + 378p − 15.

Proof. By (8.3.1),

M0

((
ϕ(q1/7)
ϕ(q7)

)8
)

= M0

(
(1 + u + v + w)8

)
. (8.3.54)

By Lemma 8.3.13 and (8.3.3) or Theorem 8.3.1,

M0

((
ϕ(q1/7)
ϕ(q7)

)8
)

= 344m4 − 343 = 120m4 + 224m4 − 343

= 120m4 + 224
(
(5p + 2)m2 + (p − 1)3

)
− 343. (8.3.55)

By the multinomial theorem,

M0

(
(1 + u + v + w)8

)
= 28(u6v2 + v6w2 + w6u2) + 280uvw(u2v3 + v2w3 + w2u3)

+ 8(u7 + v7 + w7) + 840uvw(u3v + v3w + w3u)

+ 168(uv5 + vw5 + wu5) + 2520u2v2w2

+ 560(u2v3 + v2w3 + w2u3)

+ 280(u3v + v3w + w3u) + 336uvw + 1. (8.3.56)

By Theorem 8.3.2,

(u3v + v3w + w3u)2 = 4(3p + 1 − m2)2. (8.3.57)

Thus, by (8.3.57) and (8.3.2),

u6v2 + v6w2 + w6u2 = 4(3p + 1 − m2)2 − 2pX. (8.3.58)

By (8.3.54), (8.3.55), (8.3.56), (8.3.58), (8.3.2), Theorem 8.3.2, and simplifi-
cation, we complete the proof. ��
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Theorem 8.3.4. Let u, v, and w be defined by (8.3.7)–(8.3.9). Then

u2v3 + v2w3 + w2u3 = p(p + 4), (8.3.59)

uv5 + vw5 + wu5 = p

(
ϕ4(q)
ϕ4(q7)

− 4p + 7
)

,

u7 + v7 + w7 =
ϕ8(q)
ϕ8(q7)

− 7(p − 2)
ϕ4(q)
ϕ4(q7)

+ 7p2 − 49p − 15.

Proof. Lemmas 8.3.14–8.3.16 give a system of linear equations in the variables
X, Y , and Z. Solving this linear system for X, Y , and Z and recalling the
definitions of X, Y , and Z in (8.3.45)–(8.3.47), we complete the proof. ��

We are now in a position to prove (8.3.5).

Theorem 8.3.5. Equality (8.3.5) is valid.

Proof. Without loss of generality, we can assume that

α := u3v, β := v3w, and γ := w3u. (8.3.60)

Solving the system (8.3.60) for u, v, and w, we obtain (8.3.4). Using Theorem
8.3.2, (8.3.59), and (8.3.2), we find that

α + β + γ = −2(1 + 3p − m2),

αβ + βγ + γα = p2(p + 4),

αβγ = p4.

Thus α, β, and γ are roots of the equation (8.3.5). ��



9

Ramanujan’s Cubic Analogue of the Classical
Ramanujan–Weber Class Invariants

9.1 Introduction

At the top of page 212 in his lost notebook [244], Ramanujan defines the
function λn by

λn =
eπ/2

√
n/3

3
√

3
{(1 + e−π

√
n/3)(1 − e−2π

√
n/3)(1 − e−4π

√
n/3) · · · }6, (9.1.1)

and then devotes the remainder of the page to stating several elegant values
of λn, for n ≡ 1 (mod 8). The quantity λn can be thought of as an analogue in
Ramanujan’s cubic theory of elliptic functions [57, Chapter 33] of the classical
Ramanujan–Weber class invariant Gn, which is defined by

Gn := 2−1/4q−1/24(−q; q2)∞, (9.1.2)

where q = exp(−π
√

n) and n is any positive rational number.

Entry 9.1.1 (p. 212).

λ1 = 1, λ9 = 3, λ17 = 4 +
√

17, λ25 = (2 +
√

5)2,

λ33 = 18 + 3
√

33, λ41 = 32 + 5
√

41, λ49 = 55 + 12
√

21,

λ57 =, λ65 =, λ81 =, λ89 = 500 + 53
√

89,

λ73 =

⎛
⎝
√

11 +
√

73
8

+

√
3 +

√
73

8

⎞
⎠

6

,

λ97 =

⎛
⎝
√

17 +
√

97
8

+

√
9 +

√
97

8

⎞
⎠

6

,

λ121 =

⎛
⎝3

√
3 +

√
11

4
+

√
11 + 3

√
33

8

⎞
⎠

6

,

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 10, c© Springer Science+Business Media, LLC 2009
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λ169 =, λ193 =, λ217 =, λ241 =,

λ265 =, λ289 =, λ361 = .

Note that for several values of n, Ramanujan did not record the corre-
sponding values of λn.

The purpose of this chapter is to establish all the values of λn in Entry
9.1.1, including the ones that are not explicitly stated by Ramanujan, using
the modular j-invariant, modular equations, Kronecker’s limit formula, and
the explicit Shimura reciprocity law.

The function λn had been briefly introduced in his third notebook [243,
p. 393], where Ramanujan offers a formula for λn in terms of Klein’s J-
invariant, which was first proved by Berndt and H.H. Chan [63], [57, p. 318,
Entry 11.21] using Ramanujan’s cubic theory of elliptic functions. As K.G. Ra-
manathan [237] pointed out, the formula in the third notebook is for evaluating
λn/3, especially for n = 11, 19, 43, 67, 163. Observe that −11,−19,−43,−67,
and −163 are precisely the discriminants congruent to 5 modulo 8 of imaginary
quadratic fields of class number one. (Ramanathan inadvertently inverted the
roles of n and n/3 in his corresponding remark.) In Section 9.2, we discuss
some of these results in Ramanujan’s third notebook and show how they can
be used to calculate the values of λn when 3 | n.

In this and the next two paragraphs, we offer some necessary definitions.
Let η(τ) denote the Dedekind eta function, defined by

η(τ) := e2πiτ/24
∞∏

n=1

(1 − e2πinτ ) =: q1/24f(−q), (9.1.3)

where q = e2πiτ and Im τ > 0. Then (9.1.1) can be written in the alternative
forms

λn =
1

3
√

3
f6(q)

√
qf6(q3)

=
1

3
√

3

⎛
⎜⎜⎜⎝

η

(
1 + i

√
n/3

2

)

η

(
1 + i

√
3n

2

)

⎞
⎟⎟⎟⎠

6

, (9.1.4)

where q = e−π
√

n/3.
Since much of this chapter is devoted to the evaluation of λn using modular

equations, we now give a definition of a modular equation. Let (a)k = (a)(a+
1) · · · (a+k−1) and define the ordinary hypergeometric function 2F1(a, b; c; z)
by

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, |z| < 1.

Suppose that, for 0 < α, β < 1,



9.1 Introduction 197

2F1

(
1
2
,
1
2
; 1; 1 − β

)

2F1

(
1
2
,
1
2
; 1;β

) = n
2F1

(
1
2
,
1
2
; 1; 1 − α

)

2F1

(
1
2
,
1
2
; 1;α

) , (9.1.5)

for some positive integer n. A relation between α and β induced by (9.1.5) is
called a modular equation of degree n, and β is said to have degree n over α.

In Section 9.3, using a modular equation of degree 3, we derive a formula
for λn in terms of the Ramanujan–Weber class invariant.

In the theory of signature 3, or in Ramanujan’s cubic theory, we say that
β has degree n over α when

2F1

(
1
3
,
2
3
; 1; 1 − β

)

2F1

(
1
3
,
2
3
; 1;β

) = n
2F1

(
1
3
,
2
3
; 1; 1 − α

)

2F1

(
1
3
,
2
3
; 1;α

) . (9.1.6)

A modular equation of degree n in the cubic theory is a relation between α
and β that is induced by (9.1.6).

In Sections 9.4 and 9.5, we establish all eight values of λp2 in Entry 9.1.1,
where p is a prime. Our proofs in Section 9.4 employ certain modular equa-
tions of degrees 3, 5, 7, and 11 in the theory of signature 3. The first three
were claimed by Ramanujan in [244] and proved by Berndt, S. Bhargava, and
F.G. Garvan in [60], and the last one was discovered more recently by the
aforementioned authors and proved in [60]. In Section 9.5, we employ recent
discoveries by Chan and W.-C. Liaw [108], [204] on Russell-type modular
equations of degrees 13, 17, and 19 in the theory of signature 3. In these two
sections, we also determine the value of λ17.

In analogy to the singular modulus αn in the classical theory of elliptic
functions [57, pp. 277–309], the cubic singular modulus is defined to be the
unique positive number α∗

n between 0 and 1 such that

2F1

(
1
3
,
2
3
; 1; 1 − α∗

n

)

2F1

(
1
3
,
2
3
; 1;α∗

n

) =
√

n, n ∈ Q.

Although Ramanujan did not record any cubic singular moduli in his note-
books [243] or lost notebook [244], it would appear that he used values of the
cubic singular modulus to derive some of his series representations for 1/π
[239] arising from his alternative cubic theory. As we shall see in Sections 9.3
and 9.8, the cubic singular modulus is intimately related to a companion μn

of λn first defined by Ramanathan [237].
In two papers [236], [237], using Kronecker’s limit formula, Ramanathan

determined several values of λn. In [237], in order to determine two specific val-
ues of the Rogers–Ramanujan continued fraction, he evaluated λ25 by applying



198 9 Ramanujan’s Cubic Class Invariant

Kronecker’s limit formula to L-functions of orders of Q(
√
−3) with conductor

5. This method was also used to determine λ49. In the other paper [236], Ra-
manathan found a representation for λn in terms of fundamental units, where
−3n is a fundamental discriminant of an imaginary quadratic field Q(

√
−3n)

that has only one class in each genus of ideal classes. In particular, he cal-
culated λ17, λ41, λ65, λ89, and λ265. This formula and all 14 values of such
λn’s are given in Section 9.6. In the same section, we extend Ramanathan’s
method to establish a similar result for λn when −3n ≡ 3 (mod 4) and there
is precisely one class per genus in each imaginary quadratic field Q(

√
−3n).

Through Section 9.6, all values of λn in Entry 9.1.1 are calculated except
for n = 73, 97, 193, 217, 241. In [65], we employed an empirical process,
analogous to that employed by G.N. Watson [275], [276] in his calculation
of class invariants, to determine λn for these remaining values of n. This
empirical method has been put on a firm foundation by Chan, A. Gee, and
V. Tan [107]. Their method works whenever 3 � n, n is square-free, and the
class group of Q(

√
−3n) takes the form Z2 ⊕ Z4 ⊕ · · · ⊕ Z2k, with 1 ≤ k ≤ 4.

The first representation of λn in (9.1.4) suggests connections between λn

and Ramanujan’s alternative cubic theory. In fact, Berndt and Chan [63] first
found such a relationship. For other connections with the cubic theory and
for recent applications of values of λn, see papers by Chan, Liaw, and Tan
[109], Chan, Gee, and Tan [107], and Berndt and Chan [64].

Values of λn play an important role in generating rapidly convergent se-
ries for 1/π. For example, using the value of λ1105, Berndt and Chan [64]
established a series for 1/π that yields about 73 or 74 digits of π per term.
The previous record, which yields 50 digits of π per term, was given by the
Borweins [88] in 1988. Chan, Liaw, and Tan [109] generated a new class of
series for 1/π depending on values of λn. For example, they proved that

4
π
√

3
=

∞∑
k=0

(5k + 1)

(
1
3

)
k

(
2
3

)
k

(
1
2

)
k

(1)3k

(
− 9

16

)k

,

which follows from the value λ9 = 3 and a certain Lambert-type series identity.
In Entry 9.1.1, we observe that if n is not divisible by 3, then λn is a unit.

In fact, it can be shown that λn is a unit when n is odd and 3 � n [65].
This chapter is based primarily on two papers, the first by Berndt, Chan,

S.-Y. Kang, and L.-C. Zhang [65], and the second by Chan, Gee, and Tan
[107]. We emphasize that in this chapter we concentrate on the values of λn

given in Entry 9.1.1. Many further values of λn are determined in [65]. As
remarked above, Ramanathan [237] studied a companion to λn, and a more
extensive generalization of λn has been examined by M.S. Mahadeva Naika,
M.C. Maheshkumar, and K. Sushan Bairy [217].
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9.2 λn and the Modular j-Invariant

Recall [120, p. 81] that the invariants J(τ) and j(τ), for τ ∈ H := {τ : Im τ >
0}, are defined by

J(τ) =
g3
2(τ)

Δ(τ)
and j(τ) = 1728J(τ), (9.2.1)

where

Δ(τ) = g3
2(τ) − 27g2

3(τ),

g2(τ) = 60
∞∑

m,n=−∞(m,n)�=(0,0)

(mτ + n)−4, (9.2.2)

and

g3(τ) = 140
∞∑

m,n=−∞
(m,n)�=(0,0)

(mτ + n)−6. (9.2.3)

Furthermore, the function γ2(τ) is defined by [146, p. 249]

γ2(τ) = 3
√

j(τ),

where the principal branch is chosen.
In his third notebook, at the top of page 392 in the pagination of [243],

Ramanujan defines a function Jn by

Jn = − 1
32

γ2

(
3 +

√
−n

2

)
= − 1

32
3

√
j

(
3 +

√
−n

2

)
. (9.2.4)

For fifteen values of n, n ≡ 3 (mod 4), Ramanujan indicates the corresponding
fifteen values for Jn. See [57, pp. 310–312] for proofs of these evaluations. In
particular,

J3 = 0, J27 = 5 · 31/3, J51 = 3(
√

17 + 4)2/3 5 +
√

17
2

,

J75 = 3 · 51/6 69 + 31
√

5
2

, J99 = (23 + 4
√

33)2/3 77 + 15
√

33
2

. (9.2.5)

The first five values of n for λn in Entry 9.1.1 are those for which 3n =
3, 27, 51, 75, 99; the corresponding five values of Jn are given in (9.2.5). Then
on the next page, which is the last page of his third notebook, Ramanujan
gives a formula leading to a representation of λn.
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Theorem 9.2.1. For q = exp(−π
√

n), define

R := Rn := 31/4q1/36 f(q)
f(q1/3)

. (9.2.6)

Then

3
√

3
R6

n

=
√

8Jn + 3 +
√

2
√

64J2
n − 24Jn + 9 − 8Jn + 6. (9.2.7)

Theorem 9.2.1 was first proved in [57, p. 318, Entry 11.21]. Since λn = R−6
3n

by (9.1.4) and (9.2.6), (9.2.7) may be restated in the form

3
√

3λn/3 =
√

8Jn + 3 +
√

2
√

64J2
n − 24Jn + 9 − 8Jn + 6. (9.2.8)

By substituting J3 = 0 into (9.2.8), we determine the first value of λn in Entry
9.1.1, and we state it as a corollary.

Corollary 9.2.1 (p. 212).
λ1 = 1.

Unfortunately, it is not so easy to find other values of λn from Theorem
9.2.1. We have to struggle with complicated radicals even when n = 9, for
which λ9 = 3. It seems that Ramanujan used this formula to determine the
values of λn/3 for rational integral values of Jn as given in Table 9.1, which
constitutes the first part of the last page of the third notebook.

n Jn 8Jn + 3 64J2
n − 24Jn + 9

11 1 11 49 = 72

19 3 27 513 = 27 · 19
43 30 243 = 27 · 32 56, 889 = 27 · 43 · 72

67 165 1323 = 27 · 72 1, 738, 449 = 27 · 312 · 67
163 20010 160, 083 = 27 · 772 25, 625, 126, 169 = 27 · 163 · 24132

Table 9.1

We use Ramanujan’s discoveries recorded between Table 9.1 and Theorem
9.2.1 on the last page in his third notebook. Ramanujan first sets, for q =
exp(−π

√
n),

tn :=
√

3q1/18 f(q1/3)f(q3)
f2(q)

(9.2.9)

and

un :=
1
3

√
1 +

8
3
Jn. (9.2.10)

(To avoid a conflict of notation, we have replaced Ramanujan’s second use of
tn by un.) He then asserts that
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tn =
(

2
√

64J2
n − 24Jn + 9 − (16Jn − 3)

)1/6

(9.2.11)

and lists very simple polynomials satisfied by tn and un. The definition of un

in (9.2.10) seems unmotivated, but by recalling from the proof of Theorem
9.2.1 in [57, p. 321, Equation (11.33)] that

2
√

8Jn + 3 =
f6(q1/3)
q1/6f6(q)

− 27
√

q
f6(q3)
f6(q)

, (9.2.12)

we find that

2un =
1

3
√

3
f6(q1/3)
q1/6f6(q)

− 3
√

3
√

q
f6(q3)
f6(q)

. (9.2.13)

We summarize these results in the following two corollaries.

Corollary 9.2.2.

λn/3 − λ−1
3n =

2
√

8Jn + 3
3
√

3
.

Proof. This is a restatement of either (9.2.12) or (9.2.13), with the definition
of λn being given by (9.1.4). ��

Corollary 9.2.3.

λ3n

λn/3
= 2
√

64J2
n − 24Jn + 9 + (16Jn − 3).

Proof. By (9.1.4) and (9.2.9), t6n = 27λn/3λ
−1
3n . We therefore obtain the result

at once from (9.2.11). ��

Corollary 9.2.4 (p. 212).
λ9 = 3.

Proof. Let n = 3 in either Corollary 9.2.2 or Corollary 9.2.3. The result
follows immediately from the facts that J3 = 0 from (9.2.5) and λ1 = 1. ��

Corollary 9.2.5 (p. 212).

λ33 = (3
√

3)(2
√

3 +
√

11) = 18 + 3
√

33.

Proof. Using Theorem 9.2.1 with n = 11 and the value J11 = 1 from Table
9.1, we find that

λ11/3 =
2
√

3 +
√

11
3
√

3
. (9.2.14)

Using (9.2.14) and either Corollary 9.2.2 or Corollary 9.2.3 when n = 11, we
obtain Corollary 9.2.5. ��
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Corollary 9.2.6 (p. 212).

λ57 = 33/4

√
2
√

19 + 5
√

3
(√

46 + 6
√

57 +
√

45 + 6
√

57
)

.

Proof. Using (9.2.8) with n = 19, we find that, since J19 = 3 from Table 9.1,

λ19/3 = 3−3/4

(√
3
√

3 +
√

2(
√

19 −
√

3)
)

.

Let us represent x =
√

3
√

3 +
√

2(
√

19 −
√

3) as a product of units. If t =√
2(
√

19 −
√

3), then (x − t)2 = 3
√

3, or

x2 − 2tx + 2
√

19 − 5
√

3 = 0. (9.2.15)

Let
y =

x√
2
√

19 − 5
√

3
.

Then (9.2.15) becomes

x

√
2
√

19 − 5
√

3

⎛
⎝y − 2t√

2
√

19 − 5
√

3
+

1
y

⎞
⎠ = 0. (9.2.16)

Hence, applying the quadratic formula to

y +
1
y

=
2
√

2
√

19 − 2
√

3√
2
√

19 − 5
√

3
= 2
√

46 + 6
√

57,

we find that

y =
√

46 + 6
√

57 +
√

45 + 6
√

57,

from which it follows that

λ19/3 = 3−3/4

√
2
√

19 − 5
√

3
(√

46 + 6
√

57 +
√

45 + 6
√

57
)

. (9.2.17)

From (9.2.17) and either Corollary 9.2.2 or Corollary 9.2.3 with n = 19, we
deduce Corollary 9.2.6. ��

By similar methods, we can calculate the values of λ129, λ201, and λ489

[65].
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9.3 λn and the Class Invariant Gn

In [237], Ramanathan introduced a new function μn defined by

μn :=
1

3
√

3

(
η(i
√

n/3)
η(i

√
3n)

)6

=
1

3
√

3
f6(−q2)
qf6(−q6)

, q = e−π
√

n/3. (9.3.1)

Then by (9.1.4), (9.3.1), and Euler’s pentagonal number theorem (8.1.4),

λn

μn
= q1/2

(
f(q)f(−q6)
f(−q2)f(q3)

)6

= q1/2

(
(−q; q2)∞
(−q3; q6)∞

)6

.

Hence from (9.1.2), we deduce the following result.

Theorem 9.3.1.
λn

μn
=
(

Gn/3

G3n

)6

.

Let

P =
f(−q)

q1/12f(−q3)
and Qp =

f(−qp)
qp/12f(−q3p)

. (9.3.2)

Recall the modular equation [56, p. 204, Entry 51]

(PQ2)2 +
9

(PQ2)2
=
(

Q2

P

)6

+
(

P

Q2

)6

. (9.3.3)

Replacing q by −q in (9.3.3), we deduce from (9.1.4), (9.3.1), (9.3.2), and
Theorem 9.3.1 that

3(λnμn)1/3 − 3(λnμn)−1/3 =
(

G3n

Gn/3

)6

−
(

Gn/3

G3n

)6

. (9.3.4)

Solving (9.3.4) for λnμn, we find that

λnμn =

(
c +
√

c2 + 9
3

)3

, (9.3.5)

where

2c =
(

G3n

Gn/3

)6

−
(

Gn/3

G3n

)6

. (9.3.6)

Hence from Theorem 9.3.1 and (9.3.5), we derive the following theorem.

Theorem 9.3.2. If c is defined by (9.3.6), then

λn =

⎛
⎝
(

Gn/3

G3n

)√
c +
√

c2 + 9
3

⎞
⎠

3

.
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We give another proof of Corollary 9.2.1.

Corollary 9.3.1 (p. 212).

λ1 = 1 and μ1 = 1.

Proof. Since G1/n = Gn [239], (G1/3/G3)6 = 1. Substituting this value into
Theorem 9.3.2, we find the value of λ1, and then using Theorem 9.3.1, we
deduce the value of μ1 at once. ��

Setting n = 3 in Theorem 9.3.2, we can deduce that [65]

λ3 = 33/4

√
3 − 1√

2
.

9.4 λn and Modular Equations

We employ a certain type of modular equation of degree p in P and Qp (defined
in (9.3.2)) to calculate several values of λn. First, recall the modular equation
of degree 9 [54, p. 346, Entry 1(iv)]

1 + 9q
f3(−q9)
f3(−q)

=
(

1 + 27q
f12(−q3)
f12(−q)

)1/3

. (9.4.1)

After replacing q by −q on both sides, we deduce the following result from
the definition of λn in (9.1.4).

Theorem 9.4.1.

1 − 1
λ2

n

=
(

1 −
√

3
λnλ9n

)3

.

Corollary 9.4.1 (p. 212). We have

λ9 = 3

and
λ81 = 3 3

√
3(52 + 36 3

√
3 + 25 3

√
32).

Proof. Letting n = 1 and n = 9 in Theorem 9.4.1, we obtain, respectively,
the values of λ9 and λ81. ��

At the end of Section 9.1, we remarked that λn is a unit for odd n not
divisible by 3. With this as motivation, set

λn = (
√

a + 1 +
√

a)6, (9.4.2)

and let
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Λ = λ1/3
n + λ−1/3

n . (9.4.3)

Then
a =

Λ − 2
4

. (9.4.4)

By determining Λ in (9.4.3) and then using (9.4.4) and (9.4.2), we next use
modular equations to prove all the evaluations of λp2 given explicitly by Ra-
manujan in Entry 9.1.1.

Theorem 9.4.2.

(27λnλ25n)1/3 +
(

27
λnλ25n

)1/3

=
(

λ25n

λn

)1/2

−
(

λn

λ25n

)1/2

+ 5.

Proof. From [56, p. 221, Entry 62], we find that

(PQ5)2 + 5 +
9

(PQ5)2
=
(

Q5

P

)3

−
(

P

Q5

)3

, (9.4.5)

where P and Q5 are defined by (9.3.2). We can immediately deduce Theorem
9.4.2 from (9.4.5) and (9.1.4) after replacing q by −q. ��

Corollary 9.4.2 (p. 212).

λ25 =

(
1 +

√
5

2

)6

= (2 +
√

5)2.

Proof. For brevity, we set λ = λ25 in the proof. Let n = 1 in Theorem 9.4.2.
Then we see that

3(λ1/3 + λ−1/3) = (λ1/2 − λ−1/2) + 5. (9.4.6)

Set Λ = λ1/3 + λ−1/3. Since

λ1/2 − λ−1/2 = (λ1/6 − λ−1/6)(λ1/3 + λ−1/3 + 1),

(9.4.6) becomes
3Λ − 5 = (Λ − 2)1/2(Λ + 1),

which can be simplified, after squaring both sides, to

(Λ − 3)3 = 0.

Thus Λ = 3 and a = 1/4 by (9.4.4). Hence, from (9.4.2),

λ25 =

(√
5
4

+

√
1
4

)6

.

��
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Theorem 9.4.3.

(
27λnλ49n

)1/2

+
(

27
λnλ49n

)1/2

=
(

λ49n

λn

)2/3

+ 7
(

λ49n

λn

)1/3

− 7
(

λn

λ49n

)1/3

−
(

λn

λ49n

)2/3

.

Proof. With the use of (9.3.2) and (9.1.4), our theorem can be deduced from
the modular equation [56, p. 236, Entry 69]

(PQ7)3 +
27

(PQ7)3
=
(

Q7

P

)4

− 7
(

Q7

P

)2

+ 7
(

P

Q7

)2

−
(

P

Q7

)4

, (9.4.7)

with q replaced by −q. ��
Corollary 9.4.3 (p. 212).

λ49 =

(√
7 +

√
3

2

)6

= 55 + 12
√

21.

Proof. Let n = 1 in Theorem 9.4.3 and set λ = λ49 to deduce that

3
√

3(λ1/2 + λ−1/2) = λ2/3 + 7λ1/3 − 7λ−1/3 − λ−2/3

= (λ1/3 − λ−1/3)(λ1/3 + λ−1/3 + 7), (9.4.8)

which can be simplified to

3
√

3(λ1/3 + λ−1/3 − 1) = (λ1/6 − λ−1/6)(λ1/3 + λ−1/3 + 7). (9.4.9)

Letting Λ = λ1/3 + λ−1/3 in (9.4.9), we find that

3
√

3(Λ − 1) =
√

Λ − 2(Λ + 7). (9.4.10)

Squaring both sides of (9.4.10), we deduce that

(Λ − 5)3(Λ + 2) = 0.

Hence, Λ = 5 and

λ49 =

(√
7
4

+

√
3
4

)6

,

by (9.4.2) and (9.4.4). ��
Theorem 9.4.4.

9
√

3{(λnλ121n)5/6 + (λnλ121n)−5/6} − 99{(λnλ121n)2/3 + (λnλ121n)−2/3}
+ 198

√
3{(λnλ121n)1/2 + (λnλ121n)−1/2}

− 759{(λnλ121n)1/3 + (λnλ121n)−1/3}

+ 693
√

3{(λnλ121n)1/6 + (λnλ121n)−1/6} − 1386 =
(

λn

λ121n

)
+
(

λ121n

λn

)
.
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Proof. A modular equation of degree 11, which was not mentioned by Ra-
manujan, was established by Berndt, Bhargava, and Garvan [60], and is given
by

(PQ11)5 +
(

3
PQ11

)5

+ 11

{
(PQ11)4 +

(
3

PQ11

)4
}

(9.4.11)

+ 66

{
(PQ11)3 +

(
3

PQ11

)3
}

+ 253

{
(PQ11)2 +

(
3

PQ11

)2
}

+ 693

{
(PQ11) +

(
3

PQ11

)}
+ 1368 =

(
P

Q11

)6

+
(

Q11

P

)6

,

where P and Q11 are defined by (9.3.2). Replacing q by −q in the equation
above, then setting q = e−π

√
n/3, and lastly using (9.1.4), we deduce Theorem

9.4.4. ��

Corollary 9.4.4 (p. 212).

λ121 =

⎛
⎝
√

19 + 3
√

33
8

+

√
11 + 3

√
33

8

⎞
⎠

6

=

⎛
⎝3

√
3 +

√
11

4
+

√
11 + 3

√
33

8

⎞
⎠

6

.

Proof. Letting n = 1 and Λ = λ
1/3
121 +λ

−1/3
121 in Theorem 9.4.4, we deduce that

9
√

3(Λ2 − Λ − 1)(Λ + 2)1/2 − 99(Λ2 − 2) + 198
√

3(Λ − 1)(Λ + 2)1/2

− 759Λ + 693
√

3(Λ + 2)1/2 − 1386 = Λ(Λ2 − 3). (9.4.12)

Rearranging (9.4.12), we find that

9
√

3(Λ + 2)1/2(Λ2 + 21Λ + 54) = Λ3 + 99Λ2 + 756Λ + 1188,

and then squaring both sides, we deduce the equation

(Λ2 − 15Λ − 18)3 = 0.

Thus

Λ =
3(5 +

√
33)

2
.

We complete the proof by using (9.4.2) and (9.4.4). ��

Lemma 9.4.1.
λ1/n =

1
λn

.
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Proof. Recall that

η(τ + 1) = eπi/12η(τ) and η(−1/τ) = (τ/i)1/2η(τ). (9.4.13)

From these properties of the Dedekind eta function or from Entry 27(iv) in
Chapter 16 of [54, p. 43], we find that

η6

(
1 + i/

√
3n

2

)
=
(
3n

√
3n
)

η6

(
1 + i

√
3n

2

)

and

η6

(
1 + i

√
3/n

2

)
=
(

n

3

√
n

3

)
η6

(
1 + i

√
n/3

2

)
.

Hence the lemma follows from (9.1.4). ��

Using Theorems 9.4.2, 9.4.3, and 9.4.4, along with Lemma 9.4.1, Berndt,
Chan, Kang, and Zhang [65] established the values

λ5 =
1 +

√
5

2
,

λ7 = (2 +
√

3)3/2

(√
3 +

√
7

2

)−3/2

,

λ11 = (2
√

3 +
√

11)3/2(10 + 3
√

11)−1/2.

9.5 λn and Modular Equations in the Theory of
Signature 3

Suppose that β has degree p over α in the theory of signature 3, and let

z1 := 2F1

(
1
3
,
2
3
; 1;α

)
and zp := 2F1

(
1
3
,
2
3
; 1;β

)
.

If ω := exp(2πi/3), the cubic theta functions are defined by

a(q) :=
∞∑

m,n=−∞
qm2+mn+n2

, (9.5.1)

b(q) :=
∞∑

m,n=−∞
ωm−nqm2+mn+n2

, (9.5.2)

and

c(q) :=
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 . (9.5.3)
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Then [60, Lemma 2.6, Corollary 3.2]

a(q) = z1, b(q) = (1 − α)1/3z1, c(q) = α1/3z1,

and
a(qp) = zp, b(qp) = (1 − β)1/3zp, c(qp) = β1/3zp.

Thus, it follows that

x := (αβ)1/6 =
(

c(q)c(qp)
a(q)a(qp)

)1/2

(9.5.4)

and

y := {(1 − α)(1 − β)}1/6 =
(

b(q)b(qp)
a(q)a(qp)

)1/2

. (9.5.5)

Since [60, Lemma 5.1]

b(q) =
f3(−q)
f(−q3)

, (9.5.6)

c(q) = 3q1/3 f3(−q3)
f(−q)

, (9.5.7)

and [90], [57, p. 96, Theorem 2.2]

a3(q) = b3(q) + c3(q), (9.5.8)

we find that

a(q) =

{
f12(−q) + 27qf12(−q3)

f3(−q)f3(−q3)

}1/3

. (9.5.9)

(This was also proved by Ramanujan; see [54, p. 460, Entry 3(i)].) Hence, by
(9.5.4)–(9.5.7) and (9.5.9),

x =
3q(p+1)/6f2(−q3)f2(−q3p)

{f12(−q) + 27qf12(−q3)}1/6{f12(−qp) + 27qpf12(−q3p)}1/6
(9.5.10)

and

y =
f2(−q)f2(−qp)

{f12(−q) + 27qf12(−q3)}1/6{f12(−qp) + 27qpf12(−q3p)}1/6
. (9.5.11)

Let

T := T (q) :=
f(−q)

31/4q1/12f(−q3)

and
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Up := Up(q) :=
f(−qp)

31/4qp/12f(−q3p)
.

Then from (9.5.10) and (9.5.11), we find that

x

y
= (TUp)−2 (9.5.12)

and
xy = (T 6 + T−6)−1/3(U6

p + U−6
p )−1/3. (9.5.13)

We now employ modular equations in x and y to calculate further values
of λn.

Theorem 9.5.1.

32
{

(λnλ289n)2/3 + (λnλ289n)−2/3
}

+ 80
{

(λnλ289n)1/3 + (λnλ289n)−1/3
}

+ 118 + (λn − λ−1
n )1/3(λ289n − λ−1

289n)1/3
(
(λnλ289n)2/3 + (λnλ289n)−2/3

+ 35
{

(λnλ289n)1/3 + (λnλ289n)−1/3
}

+ 56
)

− (λn − λ−1
n )2/3(λ289n − λ−1

289n)2/3
(
(λnλ289n)1/3 + (λnλ289n)−1/3 − 14

)

=
1
3

{(
λn

λ289n

)
+
(

λn

λ289n

)−1
}

.

Proof. The modular equation of degree 17 with which we begin our proof
was first established by Chan and Liaw [108] and is given by

x6 + 96x5y − 240x4y2 + 354x3y3 − 240x2y4 + 96xy5 + y6 − 3x4 + 105x3y

− 168x2y2 + 105xy3 − 3y4 + 3x2 + 42xy + 3y2 − 1 = 0, (9.5.14)

where x and y are defined by (9.5.4) and (9.5.5), respectively, with p = 17.
Dividing both sides of (9.5.14) by 3x3y3, we obtain

32
(

x2

y2 +
y2

x2

)
− 80

(
x

y
+

y

x

)
+ 118 − 1

xy

{(
x2

y2 +
y2

x2

)
− 35

(
x

y
+

y

x

)
+ 56

}

+
1

x2y2

{(
x

y
+

y

x

)
+ 14

}
=

1
3

{
1

x3y3 −
(

x3

y3 +
y3

x3

)}
, (9.5.15)

after a slight rearrangement. By (9.5.12), (9.5.13), and (9.5.15),

32{(TU17)−4 + (TU17)4} − 80{(TU17)−2 + (TU17)2} + 118

− (T 6 + T−6)1/3(U6
17 + U−6

17 )1/3

×
(

(TU17)−4 + (TU17)4 − 35{(TU17)−2 + (TU17)2} + 56
)
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+ (T 6 + T−6)2/3(U6
17 + U−6

17 )2/3

(
(TU17)−2 + (TU17)2 + 14

)

=
1
3

{(
T

U17

)6

+
(

T

U17

)−6
}

. (9.5.16)

Replacing q by −q in (9.5.16), then setting q = e−π
√

n/3, and lastly using
(9.1.4), we complete the proof. ��

Corollary 9.5.1 (p. 212).

λ289 =

⎛
⎝
√

34 + 13 3
√

17 + 5 3
√

172

2
+

√
30 + 13 3

√
17 + 5 3

√
172

2

⎞
⎠

6

.

Proof. Set n = 1 and λ = λ289. It follows from Theorem 9.5.1 that

118 + 32(λ2/3 + λ−2/3) + 80(λ1/3 + λ−1/3) =
λ + λ−1

3
. (9.5.17)

Let Λ := λ1/3 + λ−1/3. Then from (9.5.17), we may deduce that

118 + 32(Λ2 − 2) + 80Λ =
Λ3 − 3Λ

3
.

Hence Λ is a root of the equation

Λ3 − 96Λ2 − 243Λ − 162 = 0,

and the solution that we seek is given by

Λ = 32 + 13 3
√

17 + 5 3
√

172.

Corollary 9.5.1 now follows from (9.4.2) and (9.4.4). ��

Corollary 9.5.2 (p. 212).

λ17 = 4 +
√

17.

Proof. Let n = 1/17 in Theorem 9.5.1. Then by Lemma 9.4.1, we deduce
that

171 − 64(λ17 − λ−1
17 )2/3 + 6(λ17 − λ−1

17 )4/3 =
1
6
(λ2

17 + λ−2
17 ).

We complete the proof by solving this equation for λ17. ��

Theorem 9.5.2 (p. 212).

λ169 =

⎛
⎝2 +

√
13

2
+

√
13 + 4

√
13

2

⎞
⎠

6

.
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Proof. Let x and y be defined by (9.5.4) and (9.5.5), respectively, with p = 13.
In his thesis [204], Liaw established a modular equation of degree 13, which,
by (9.5.12) and (9.5.13), can be put in the abbreviated form

{
(TU13)−42 + (TU13)42

}
+ 76142

{
(TU13)−36 + (TU13)36

}
+ 1932468187

{
(TU13)−30 + (TU13)30

}
+ 16346295812652

{
(TU13)−24 + (TU13)24

}
− 42859027901079

{
(TU13)−18 +(TU13)18

}
+ 30681672585330

{
(TU13)−12 + (TU13)12

}
+ 44443969755835

{
(TU13)−6 + (TU13)6

}
− 90882188302360 + R(x, y) = 0, (9.5.18)

where R(x, y) contains a factor 1/(x3y3). Let q = e−π/
√

3, recall that λ1 = 1,
and set λ = λ169. Replacing q by −q in (9.5.18) and using (9.1.4), we find
that

− (λ7 + λ−7) + 76142(λ6 + λ−6) − 1932468187(λ5 + λ−5)

+ 16346295812652(λ4 + λ−4) + 42859027901079(λ3 + λ−3)

+ 30681672585330(λ2 + λ−2) − 44443969755835(λ + λ−1)
− 90882188302360 = 0, (9.5.19)

since R(x, y) equals 0 after q is replaced by −q, because

1/x3y3 = (T 6 + T−6)(U6
13 + U−6

13 )

is a factor of R(x, y), and because
{
T 6(−q) + T−6(−q)

}{
U6

13(−q) + U−6
13 (−q)

}
= −

{
(λ1 − λ−1

1 )(λ169 − λ−1
169)
}

.

Set Λ = λ + λ−1. Then (9.5.19) takes the equivalent form

− (Λ7 − 7Λ5 + 14Λ3 − 7Λ) + 76142(Λ6 − 6Λ4 + 9Λ2 − 2)

− 1932468187(Λ5 − 5Λ3 + 5Λ) + 16346295812652(Λ4 − 4Λ2 + 2)

+ 42859027901079(Λ3 − 3Λ) + 30681672585330(Λ2 − 2)
− 44443969755835Λ − 90882188302360 = 0,

which simplifies to

(Λ − 2)(Λ2 − 25380Λ − 39100)3 = 0.

Therefore,
λ + λ−1 = Λ = 10(1269 + 352

√
13).
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Solving the quadratic equation above, we find that

λ169 = 6345 + 1760
√

13 + 12
√

559221 + 155100
√

13.

Using the formula [69, equation (3.1)]

{
(32b3 − 6b) +

√
(32b3 − 6b)2 − 1

}1/6

=

√
b +

1
2

+

√
b − 1

2
,

with b = (15 + 4
√

13)/4, we deduce the given value of λ169. ��

Equation (9.5.18) can also be used to deduce λ13.

Theorem 9.5.3 (p. 212).

λ361 =
1
3

(
2928581 + 1097504(19)1/3 + 411296(19)2/3

+4
√

1608109304409 + 602648894772(19)1/3 + 225846395748(19)2/3

)
.

Proof. The proof is similar to that for Theorem 9.5.2. Let x and y be defined
by (9.5.4) and (9.5.5), respectively, and set u = x3, v = y3, and p = 19. Liaw
[204] discovered a new modular equation of degree 19, which we give in the
abbreviated form(

u10

v10

)
+
(

v10

u10

)
− 17571484

{(
u9

v9

)
+
(

v9

u9

)}

+ 102919027240030
{(

u8

v8

)
+
(

v8

u8

)}

− 200937885610911191740
{(

u7

v7

)
+
(

v7

u7

)}

+ 363165905126589014509
{(

u6

v6

)
+
(

v6

u6

)}

− 2745050674147219542832
{(

u5

v5

)
+
(

v5

u5

)}

+ 1669253999271588508904
{(

u4

v4

)
+
(

v4

u4

)}

− 9487507697742191502320
{(

u3

v3

)
+
(

v3

u3

)}

− 7070474114231105014510
{(

u2

v2

)
+
(

v2

u2

)}

− 7249503742499660191624
{(u

v

)
+
( v

u

)}

− 29289891786172199497868 + R(u, v) = 0,
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where R(u, v) is a sum of terms with a factor 1/(uv), which equals 0 after
setting q = e−π/

√
3 and replacing q by −q. With Λ = λ361+λ−1

361, we eventually
find that

(Λ10 − 10Λ8 + 35Λ6 − 50Λ4 + 25Λ2 − 2)

− 17571484(Λ9 − 9Λ7 + 27Λ5 − 30λ3 + 9Λ)

+ 102919027240030(Λ8 − 8Λ6 + 20Λ4 − 16Λ2 + 2)

− 200937885610911191740(Λ7 − 7Λ5 + 14λ3 − 7Λ)

+ 363165905126589014509(Λ6 − 6Λ4 + 9Λ2 − 2)

− 2745050674147219542832(Λ5 − 5Λ3 + 5Λ)

+ 1669253999271588508904(Λ4 − 4Λ2 + 2)

− 9487507697742191502320(Λ3 − 3Λ)

− 7070474114231105014510(Λ2 − 2)
− 7249503742499660191624Λ − 29289891786172199497868 = 0,

which simplifies to

(Λ + 2)(−18438200 + 7433420Λ − 5857162Λ2 + Λ3)3 = 0.

Hence,

Λ =
1
3
(5857162 + 2195008(19)1/3 + 822592(19)2/3).

Solving the equation Λ = λ361 + λ−1
361 for λ361, we complete the proof. ��

9.6 λn and Kronecker’s Limit Formula

Let m > 0 be square-free and let K = Q(
√
−m), the imaginary quadratic

field with discriminant d, where

d =

{
−4m, if − m ≡ 2, 3 (mod 4),
−m, if − m ≡ 1 (mod 4).

(9.6.1)

Let d = d1d2, where d1 > 0 and, for i = 1, 2, di ≡ 0 or 1 (mod 4). If P denotes
a prime ideal in K, then the Gauss genus character χ is defined by

χ(P) =

⎧⎪⎪⎨
⎪⎪⎩

(
d1

N(P)

)
, if N(P) � d1,(

d2
N(P)

)
, if N(P) | d1,

(9.6.2)

where N(P) is the norm of the ideal P and ( ·· ) denotes the Kronecker symbol.
Let
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Ω =

{√
−m , if − m ≡ 2, 3 (mod 4),

1 +
√
−m

2 , if − m ≡ 1 (mod 4).
(9.6.3)

It is known [222] that each ideal class in the class group CK contains primitive
ideals that are Z-modules of the form A = [a, b+Ω], where a and b are rational
integers, a > 0, a | N(b+Ω), |b| ≤ a/2, a is the smallest positive integer in A,
and N(A) = a. Hence, Siegel’s theorem [259, p. 72], obtained from Kronecker’s
limit formula, can be stated as follows.

Theorem 9.6.1 (Siegel). Let χ be a genus character arising from the de-
composition d = d1d2. Let hi be the class number of the field Q(

√
di), ω and

ω2 the numbers of roots of unity in K and Q(
√

d2), respectively, and ε1 the
fundamental unit of Q(

√
d1). Let

F (A) =
|η(z)|2√

a
, (9.6.4)

where z = (b + Ω)/a with [a, b + Ω] ∈ A−1. Then

ε
ωh1h2/ω2
1 =

∏
A∈CK

F (A)−χ(A). (9.6.5)

Ramanathan utilized Theorem 9.6.1 to compute λn and μn [236, Theorem
4].

Theorem 9.6.2 (Ramanathan). Let 3n be a positive square-free integer and
let K = Q(

√
−3n) be an imaginary quadratic field such that each genus con-

tains only one ideal class. Then

∏
χ

ε
tχ

1 =

{
λn, if n ≡ 1 (mod 4),
μn, if n ≡ 2, 3 (mod 4),

where
tχ =

6ωh1h2

ω2h
(9.6.6)

and h, h1, h2 are the class numbers of K, Q(
√

d1), and Q(
√

d2), respectively,
ω and ω2 are the numbers of roots of unity in K and Q(

√
d2), respectively, ε1 is

the fundamental unit in Q(
√

d1), and χ runs through all genus characters such
that if χ corresponds to the decomposition d1d2, then either

(
d1
3

)
or
(

d2
3

)
= −1

and therefore d1, d2, h1, h2, ω2, and ε1 are dependent on χ.

With the use of Theorem 9.6.2, fourteen values of λn and nineteen of μn

can be evaluated. Among them, Ramanujan recorded only the values of λn

for which the exponent tχ equals 1. For completeness, we state all fourteen
values of such λn’s in the following corollary, although only five of the fourteen
values are indicated in Entry 9.1.1.



216 9 Ramanujan’s Cubic Class Invariant

Corollary 9.6.1 (p. 212).

λ5 =
1 +

√
5

2
, λ17 = 4 +

√
17,

λ41 = 32 + 5
√

41, λ65 =
(
8 +

√
65
)(1 +

√
5

2

)6

,

λ89 = 500 + 53
√

89, λ145 =

(
1 +

√
5

2

)9(
5 +

√
29

2

)3

,

λ161 =
(
16
√

23 + 29
√

7
)(3

√
3 +

√
23

2

)3

,

λ185 =
(
68 + 5

√
185
)(1 +

√
5

2

)12

,

λ209 =
(
46
√

11 + 35
√

19
)(

2
√

3 +
√

11
)3

,

λ265 =

(
7 +

√
53

2

)3(
1 +

√
5

2

)15

,

λ385 =

(
1 +

√
5

2

)9(
5 +

√
21

2

)3(√
7 +

√
11

2

)3(√
15 +

√
11

2

)3

,

λ665 =
(
14
√

35 + 19
√

19
)(

2
√

5 +
√

21
)3
(

1 +
√

5
2

)12(√
15 +

√
19

2

)3

,

λ1001 =
(
83
√

77 + 202
√

13
)(

2
√

3 +
√

11
)3
(

9 +
√

77
2

)3(
7
√

3 +
√

143
2

)3

,

λ1105 =
(
4 +

√
17
)3 (

8 +
√

65
)3
(

1 +
√

5
2

)12(
15 +

√
221

2

)3

.

We next state a theorem that was derived in [65] from Theorem 9.6.1 and
that can be used to evaluate certain λn for n ≡ 3 (mod 4).

Theorem 9.6.3. Let n be a positive square-free integer greater than 3, not
divisible by 3, and with n ≡ 3 (mod 4). Let K = Q(

√
−3n) be an imaginary

quadratic field such that each genus contains only one ideal class. Let C0 be
the principal ideal class containing [1, Ω], where Ω is defined by (9.6.3), and
let C1 and C2 be nonprincipal ideal classes containing [2, 1+Ω] and [6, 3+Ω],
respectively. Then

λn =

⎛
⎝ ∏

χ(C1)=−1

ε
tχ

1

⎞
⎠

−1⎛
⎝ ∏

χ(C2)=−1

ε
tχ

1

⎞
⎠ ,
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where tχ, d1, d2, h1, h2, ω2, and ε1 are defined in Theorem 9.6.2, and the
products are over all characters χ (the first with χ(C1) = −1 and the second
with χ(C2) = −1) associated with the decomposition d = d1d2. Therefore d1,
d2, h1, h2, ω2, and ε1 are dependent on χ.

We can apply Theorem 9.6.3 to evaluate λn when n = 7, 11, 19, 31, 35,
55, 59, 91, 115, 119, 455. Since none of these values of n is on Ramanujan’s
list in Entry 9.1.1, we refer the reader to [65] for details.

9.7 The Remaining Five Values

At this juncture, we see that there are five values of n, namely, n =
73, 97, 193, 217, 241 in Ramanujan’s Entry 9.1.1, for which we have not cal-
culated the associated value of λn. In [65], we used an empirical process to
derive these values of λn. This empirical process is analogous to those used
by Watson [275], [276] in his computations of the Ramanujan–Weber class
invariants Gn and gn.

Theorem 9.7.1 (p. 212). We have

λ73 =

⎛
⎝
√

11 +
√

73
8

+

√
3 +

√
73

8

⎞
⎠

6

, (9.7.1)

λ97 =

⎛
⎝
√

17 +
√

97
8

+

√
9 +

√
97

8

⎞
⎠

6

, (9.7.2)

λ241 =
(

16 +
√

241 +
√

496 + 32
√

241
)3

, (9.7.3)

λ217 =

⎛
⎝
√

1901 + 129
√

217
8

+

√
1893 + 129

√
217

8

⎞
⎠

3/2

(9.7.4)

×

⎛
⎝
√

1597 + 108
√

217
4

+

√
1593 + 108

√
217

4

⎞
⎠

3/2

, (9.7.5)

λ
1/3
193 +

1

λ
1/3
193

=
1
4

(
39 + 3

√
193 +

√
2690 + 194

√
193
)

. (9.7.6)

Chan, Gee, and Tan [107] employed more sophisticated methods including
the Shimura reciprocity law to give rigorous proofs of the evaluations of λ73

and λ217. In the next three sections, we will follow the method in [107] and
give a complete proof of Theorem 9.7.1 .
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9.8 Some Modular Functions of Level 72

For τ ∈ C and Im τ > 0, define

g0(τ) :=
η
(τ

3

)
η(τ)

,

where the Dedekind eta function η(τ) is defined by (9.1.3). The function g0(τ)
is a modular function of level 72. This means that it is meromorphic on the
completed upper half-plane H∪Q∪{∞}, admits a Laurent series expansion in
the variable q1/72 = e2πiτ/72 centered at q = 0, and is invariant with respect
to the matrix group

Γ (72) := ker[SL2(Z) → SL2(Z/72Z)].

It is known that the minimal polynomial for g12
0 (τ) over the modular func-

tion field Q(j(τ)), with j(τ) the modular j-invariant defined by (9.2.1), is given
by [107, (2.5)]

X4 + 36 X3 + 270 X2 + (756 − j(τ))X + 36. (9.8.1)

Over Q(j(τ)), the other roots of (9.8.1) are g12
1 (τ), g12

2 (τ), and g12
3 (τ) defined

by

g1(τ) := ζ−1
24

η ((τ + 1)/3)
η(τ)

, g2(τ) :=
η ((τ + 2)/3)

η(τ)
, and g3(τ) :=

√
3
η (3τ)
η(τ)

.

(9.8.2)
The proof of the following theorem is similar to the proof of [107, Theorem

2.1].

Theorem 9.8.1. If n is square-free and n ≡ 1 (mod 4) then

g12
2

(
−1 +

√
−3n

2

)

lies in the Hilbert class field K1 associated with K = Q(
√
−3n).

If K is an imaginary quadratic field of discriminant D, then, by class field
theory, there exists an isomorphism

Gal(K1/K) � C(D) (9.8.3)

between the Galois group for K ⊂ K1 and the form class group of discriminant
D. Among the primitive quadratic forms [a, b, c] having discriminant D =
b2 − 4ac, we can find a complete set of representatives in C(D) by choosing
the reduced forms

| b |≤ a ≤ c and b ≥ 0, if either | b |= a or a = c .

In view of (9.8.3), it is therefore not surprising that we can define an action
of C(D) on certain elements arising from modular functions that lie in K1.
The main result is the following explicit form of the Shimura reciprocity law.
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Lemma 9.8.1. Let K be an imaginary quadratic number field of odd discrim-
inant D, and let h ∈ Fm, where Fm is the field of modular functions of level
m over Q(ζm) with h((−1 +

√
D)/2) ∈ K1. Given a primitive quadratic form

[a, b, c] of discriminant D, let M = M[a,b,c] ∈ GL2(Z/mZ) be the matrix that
satisfies the congruences

M ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a b−1

2

0 1

)
(mod pr), if p � a,

(
−b−1

2 −c

1 0

)
(mod pr), if p | a and p � c,

(
−b−1

2 − a 1−b
2 − c

1 −1

)
(mod pr), if p | a and p | c,

at all prime power factors pr | m. The Galois action of the class of [a,−b, c]
in C(D) with respect to the Artin map is given by

(
h

(
−1 +

√
D

2

))[a,−b,c]

= hM

(
−b +

√
D

2a

)
,

where hM denotes the image of h under the action of M .

For a proof of Lemma 9.8.1, see Gee’s paper [153].
We apply Lemma 9.8.1 with h = g12

2 , D = −3n for n ≡ 1 (mod 4), and
m = 72. It remains to determine the action of M on g12

2 .
First, note that the action of such an M depends only on Mprp for all

prime factors p | m, where MN ∈ GL2(Z/NZ) is the reduction modulo N of
M , and rp is the largest power of p such that prp divides m.

Now, every MN with determinant x decomposes as

MN =
(

1 0
0 x

)
N

(
a b
c d

)
N

for some
(

a b
c d

)
N

∈ SL2(Z/NZ). Since SL2(Z/NZ) is generated by SN and
TN , where S =

(
0 1
−1 0

)
and T = ( 1 1

0 1 ), it suffices to find the action of ( 1 0
0 x )prp ,

Sprp , and Tprp on h for all p | m.
For ( 1 0

0 x )prp , the action on Fm is given by lifting the automorphism of
Q(ζm) determined by

ζprp �→ ζx
prp and ζqrq �→ ζqrq ,

for all prime factors q | m such that q �= p.
In order that the actions of the matrices at different primes commute with

each other, we need to lift Sprp and Tprp to matrices in SL2(Z/mZ) such that
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they reduce to the identity matrix in SL2(Z/qrq Z) for all q �= p. In our case,
for m = 72, the prime powers are 8 and 9, and

S8 �→
(
−8 9
−9 −8

)
72

, T8 �→
(

1 9
0 1

)
72

,

S9 �→
(

9 −8
8 9

)
72

, T9 �→
(

1 −8
0 1

)
72

.

When h ∈ Fm is an η-quotient, we can use the transformation rules

η ◦ Sm(τ) =
√
−iτ η(τ) and η ◦ Tm(τ) = ζ24η(τ)

to determine the action of any Mm ∈ SL2(Z/mZ). In particular,

(g0, g1, g2, g3) ◦ S72 = (g3, ζ
10
24g2, ζ

14
24g1, g0)

and
(g0, g1, g2, g3) ◦ T72 = (g1, ζ

−2
24 g2, g0, ζ

2
24g3).

Consequently, we derive the following actions:

g12
0 g12

1 g12
2 g12

3(
1 0
0 x

)
8

g12
0 g12

1 g12
2 g12

3

S8 g12
0 g12

1 g12
2 g12

3

T8 g12
0 g12

1 g12
2 g12

3(
1 0
0 x

)
9

, 3|(x − 1) g12
0 g12

1 g12
2 g12

3(
1 0
0 x

)
9

, 3|(x − 2) g12
0 g12

2 g12
1 g12

3

S9 g12
3 g12

2 g12
1 g12

0

T9 g12
1 g12

2 g12
0 g12

3

We prove the following theorem using the table above.

Theorem 9.8.2. The action of a reduced primitive quadratic form [a, b, c]
with discriminant D in C(D) on g12

2 ((−1 +
√

D)/2) is given by

⎧⎨
⎩g2

(
−1 +

√
D

2

)12
⎫⎬
⎭

[a,−b,c]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0

(
−b +

√
D

2a

)12

, if b ≡ 0, a �≡ 0 (mod 3),

g1

(
−b +

√
D

2a

)12

, if ab ≡ −1 (mod 3),

g2

(
−b +

√
D

2a

)12

, if ab ≡ 1 (mod 3),

g3

(
−b +

√
D

2a

)12

, if a ≡ 0 (mod 3).
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Proof. We first observe that the action of M8 on g12
0 is trivial. Therefore, it

suffices to consider the action of M9 on g12
0 . When 3 � a,

M9 =
(

a b−1
2

0 1

)
≡
(

a 0
0 1

)(
1 b−1

2a
0 1

)
≡ S9

(
1 0
0 a

)
S9T

(b−1)/(2a)
9 .

If b ≡ 0 (mod 3) and a ≡ 1 (mod 3), then

(g12
2 )M9 = (g12

2 )S9( 1 0
0 a )S9T

(b−1)/(2a)
9 = (g12

1 )(
1 0
0 a )S9T

(b−1)/(2a)
9

= (g12
1 )S9T

(b−1)/(2a)
9 = (g12

2 )T
(b−1)/(2a)
9 = g12

0 , (9.8.4)

since
b − 1
2a

≡ 1 (mod 3),

when b ≡ 0 (mod 3) and a ≡ 1 (mod 3). Similarly, when b ≡ 0 (mod 3) and
a ≡ 2 (mod 3), we see that

(g12
2 )M9 = g12

0 .

This proves the first case of Theorem 9.8.2.
For the second case, note that ab ≡ −1 (mod 3). If a ≡ 1 (mod 3) and

b ≡ −1 (mod 3), then the computations are the same as in (9.8.4) except for
the final step, namely,

(g12
2 )M9 = (g12

2 )T
(b−1)/(2a)
9 = g12

1 ,

since
b − 1
2a

≡ 2 (mod 3).

The remainder of the cases can be established in a similar way. In the last
case, since 3 | a, we see that, by Lemma 9.8.1,

M9 =
(−b−1

2 −c
1 0

)
≡
(

c −b−1
2

0 1

)
S9

≡
(

c 0
0 1

)(
1 −b−1

2c
0 1

)
S9 ≡ S9

(
1 0
0 c

)
S9T

(−b−1)/(2c)
9 S9.

��

9.9 Computations of λn Using the Shimura Reciprocity
Law

We first note that

λ2
n = − 1

27
g12
2

(
−1 +

√
−3n

2

)
.

This identification allows us to compute λn using Theorem 9.8.2.
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Proof of Theorem 9.7.1. For p = 73, 97, and 241, all of which are primes, the
class groups corresponding to these primes are of the form Z4 and the compu-
tations for all these values are similar. We will discuss only the computations
of λ73 in detail.

Set
Pp = λ2

p +
1
λ2

p

. (9.9.1)

Note that λ2
n is a real unit [199, p. 166, Corollary], and hence Pp is an algebraic

integer.
The class group of Q(

√
−219) is generated by the form [5, 1, 11]. Consider

the expressions P73 + P
[5,1,11]
73 and P73P

[5,1,11]
73 , where P

[5,1,11]
73 denotes the

image of P73 under the action of [5, 1, 11]. These are both fixed by all the
elements in the class group C(

√
−219), and hence they must be rational. On

the other hand, they are algebraic integers, and this implies that they must
be integers.

By Theorem 9.8.2, we can then determine that

P73 + P
[5,1,11]
73 = 199044

and

P73P
[5,1,11]
73 = 287492.

Hence, P73 satisfies the quadratic polynomial

x2 − 199044x + 287492 = 0.

Solving this equation and simplifying, we deduce that

λ2
73 =

√
C +

√
C − 1,

where
C = 4952242369 + 579616128

√
73. (9.9.2)

It turns out that the right-hand side of (9.9.2) can be written as a power of
an element in Q(

√
73). In this case we find that if B = ((11 +

√
73)/8), then

(
√

B +
√

B − 1)12 =
√

C +
√

C − 1.

Hence we may conclude that

λ73 =

⎛
⎝
√

11 +
√

73
8

+

√
3 +

√
73

8

⎞
⎠

6

,

which is (9.7.1).
The calculations for n = 97 and 241 are similar.
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Recall that Pp is defined by (9.9.1). When p = 97, the class group of
Q(

√
−291) is generated by [5, 3, 15]. Therefore,

P97 + P
[5,3,15]
97 = 2122308

and
P97P

[5,3,15]
97 = −2833276.

Solving these last two equations simultaneously, we conclude that

P97 = 1061154 + 107744
√

97.

Using this value in (9.9.1), we solve for λ97 to deduce (9.7.2).
The class group of Q(

√
−723) is generated by [11,−5, 17]. We therefore

find that
P241 + P

[11,−5,17]
241 = 62717184900

and
P241P

[11,−5,17]
241 = 123706369796.

Hence,
P241 = 31358592450 + 2019984512

√
241.

Using (9.9.1), we can now complete the calculation of λ241.
We now turn to the case n = 217.
Here 217 is divisible by two primes, namely, 7 and 31. In this case, we

consider two numbers Q217 and R217 defined by

Q217 = λ2
217λ

2
31/7 +

1
λ2

217λ
2
31/7

and

R217 =
λ2

217

λ2
31/7

+
λ2

31/7

λ2
217

.

Note that the class group of Q(
√
−651) is generated by a := [5, 3, 33] and

b := [3, 3, 55]. The order of a is 4, and the group generated by a2 and b fixes
Q217 and R217. Hence it suffices to determine the action of b on Q217 and
R217, which can easily be done by Theorem 9.8.2. The value of λ217 resulting
from these considerations is a product of two units given by

λ217 =

⎛
⎝
√

1901 + 129
√

217
8

+

√
1893 + 129

√
217

8

⎞
⎠

3/2

×

⎛
⎝
√

1597 + 108
√

217
4

+

√
1593 + 108

√
217

4

⎞
⎠

3/2

.
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Finally, consider the case n = 193. Here the class group of Q(
√
−579) is

generated by a := [5, 1, 29], and it is of order 8. We consider the expression
P193, where Pp is given by (9.9.1). To determine P193, we compute the image
of P193 under a, a2, and a3. Our computations show that if

α := P193,

β := P a
193 = − 1

27
g12
2

(
1 +

√
−579

10

)
− 27g

−12
2

(
1 +

√
−579

10

)
,

γ := P a2

193 = − 1
27

g12
0

(
3 +

√
−579

14

)
− 27g

−12
0

(
3 +

√
−579

14

)
,

and

δ := P a3

193 = − 1
27

g12
0

(
−9 +

√
−579

22

)
− 27g

−12
0

(
−9 +

√
−579

22

)
,

then

α + β + γ + δ = 3251132424,
αβ + αγ + αδ + βγ + βδ + γδ = 82707128352,

αβγ + αβδ + βγδ + αγδ = 9465475096,

and

αβγδ = 176664526832.

Solving the quartic polynomial satisfied by P193 and simplifying, we deduce
that

λ
1/3
193 +

1

λ
1/3
193

=
1
4

(
39 + 3

√
193 +

√
2690 + 194

√
193
)

.

��
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Miscellaneous Results on Elliptic Functions
and Theta Functions

10.1 A Quasi-theta Product

At the top of page 209 of his lost notebook [244], Ramanujan recorded the
following enigmatic formula.

Entry 10.1.1 (p. 209).
{ ∞∏

n=0

(
1 − (−1)nq(2n+1)/2

1 + (−1)nq(2n+1)/2

)2n+1
}log q{ ∞∏

n=1

(
1 + (−1)niq′n

1 − (−1)niq′n

)n
}2πi

= exp
(

π2

4
−

k 3F2(1, 1, 1; 3
2 , 3

2 ; k2)

2F1( 1
2 , 1

2 ; 1; k2)

)
, (10.1.1)

where

q = exp(−πK ′/K), q′ = exp(−πK/K ′), and 0 < k < 1. (10.1.2)

Because of poor photocopying, (10.1.1) is very difficult to read in [244]. If
the powers 2n + 1 and n on the two pairs of large parentheses were absent,
the products could be expressed in terms of theta functions. Ramanujan did
not use the notation 3F2 and 2F1 for hypergeometric functions, but instead
only recorded the first three terms of each series. Also, Ramanujan did not
divulge the meaning of the notations K and K ′. However, from considerable
work in both the ordinary notebooks [243] and lost notebook [244], we can
easily deduce that K denotes the complete elliptic integral of the first kind
defined by

K := K(k) :=
∫ π/2

0

dϕ√
1 − k2 sin2 ϕ

,

where k, 0 < k < 1, denotes the modulus. Furthermore, K ′ = K(k′), where
k′ :=

√
1 − k2 is the complementary modulus.

There are no other formulas like (10.1.1) in Ramanujan’s work, and ap-
parently there are none like it in the literature as well. The purpose of the

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 11, c© Springer Science+Business Media, LLC 2009
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first few sections in this chapter is to prove (10.1.1). As will be seen in our
proof, the unique character of (10.1.1) derives from a single, almost miracu-
lous, connection with the theory of elliptic functions given in the identity

∞∑
n=0

1
(2n + 1)2 cosh{(2n + 1)α/2} =

k

2z
3F2(1, 1, 1; 3

2 , 3
2 ; k2), (10.1.3)

where α = πK ′/K and z = 2F1( 1
2 , 1

2 ; 1; k2). The identity (10.1.3) is found
in Entry 6 of Chapter 18 in Ramanujan’s second notebook [243], [54, p. 153].
Like many of Ramanujan’s discoveries, (10.1.3) is not fully understood. Is
this connection between hypergeometric series and elliptic functions a singu-
lar accident, or are there deeper, still to be recognized connections? In his
notebooks [243, p. 280], Ramanujan also attempted to find a formula similar
to (10.1.3), but with (2n + 1)2 replaced by (2n + 1)4. In fact, Ramanujan
struck out his imprecisely stated formula by putting two lines through it. See
[57, pp. 397–403] for Berndt’s failed attempt to find a correct version.

W. Duke [147] has significantly added to our understanding of Entry 10.1.1,
Entry 6 of Chapter 18 in the second notebook, and the purged entry on page
280 of the second notebook [57, pp. 402–403, Entry 78]. Duke points out that
the series in Entry 6 and on page 280 can be regarded as Eisenstein series of
negative weight. Moreover, he establishes a corrected version of the aforemen-
tioned Entry 78. Duke’s proof of Entry 6 (and a considerable generalization)
relies on a double integral of hypergeometric functions given as Entry 31(ii)
in Chapter 11 in Ramanujan’s second notebook [243], [53, p. 88], for which
he gives a shorter, more elegant proof than that given in [53, pp. 89–92].
Besides Eisenstein series of negative weight being represented by hypergeo-
metric series, Duke gives further examples of cusp forms also represented by
hypergeometric series.

In Section 10.2, we first establish in Theorem 10.2.1 an equivalent formula-
tion of (10.1.1) as an identity among infinite series of hyperbolic trigonometric
functions. Secondly, we prove this identity.

In Section 10.3, we briefly indicate generalizations of (10.1.1) and Theorem
10.2.1 and offer some related hyperbolic series of Ramanujan.

The content of the present and following two sections is taken from a paper
by Berndt, H.H. Chan, and A. Zaharescu [68].

10.2 An Equivalent Formulation of (10.1.1) in Terms of
Hyperbolic Series

Theorem 10.2.1. Let α and β be any complex numbers with nonzero real
parts and with αβ = π2. Then (10.1.1) is equivalent to the identity

α

∞∑
n=0

sinh{(2n + 1)α/2}
(2n + 1) cosh2{(2n + 1)α/2}

+ π

∞∑
n=0

(−1)n

(2n + 1) cosh2{(2n + 1)β/2}
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=
π2

4
− 2

∞∑
n=0

1
(2n + 1)2 cosh{(2n + 1)α/2} . (10.2.1)

Proof. We assume that α and β are positive real numbers. The general result
will then follow by analytic continuation. Taking logarithms on both sides of
(10.1.1), we find that

log

⎛
⎝
{ ∞∏

n=0

(
1 − (−1)nq(2n+1)/2

1 + (−1)nq(2n+1)/2

)2n+1
}log q

⎞
⎠

+ log

⎛
⎝
{ ∞∏

n=1

(
1 + (−1)niq′n

1 − (−1)niq′n

)n
}2πi

⎞
⎠ =

π2

4
−

k 3F2(1, 1, 1; 3
2 , 3

2 ; k2)

2F1( 1
2 , 1

2 ; 1; k2)
.

(10.2.2)

(Here and in the following step, we have ignored branches of the logarithm.
The justification lies in our eventual proof of (10.2.1).) For brevity, let L and
R denote, respectively, the left and right sides of (10.2.2). Then

L = log q

( ∞∑
n=0

(2n + 1)
{

log
(
1 − (−1)nq(2n+1)/2

)

− log
(
1 + (−1)nq(2n+1)/2

)})

+ 2πi

( ∞∑
n=1

n {log (1 + (−1)niq′n) − log (1 − (−1)niq′n)}
)

=: log q(S1 − S2) + 2πi(S3 − S4). (10.2.3)

Recall that q and q′ are defined in (10.1.2). Set α = πK ′/K and β = πK/K ′,
so that αβ = π2. We now proceed to show that S1, . . . , S4 can be expressed
as sums of hyperbolic functions.

Using the Taylor series of log(1+z) about z = 0 and recalling the definition
of β, we find that

S3 = −
∞∑

n=1

∞∑
m=1

n
(−1)m+mnime−βmn

m

= −
∞∑

m=1

(−i)m

m

∞∑
n=1

n
{
(−e−β)m

}n

= −
∞∑

m=1

(ie−β)m

m(1 − (−e−β)m)2
. (10.2.4)

By a similar calculation,
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S4 = −
∞∑

m=1

(−ie−β)m

m(1 − (−e−β)m)2
. (10.2.5)

Combining (10.2.4) and (10.2.5), we find that

S3 − S4 =
∞∑

m=1

−(ie−β)m + (−ie−β)m

m(1 − (−e−β)m)2

= −2i

∞∑
m=0

(−1)me−(2m+1)β

(2m + 1)(1 + e−(2m+1)β)2

= − i

2

∞∑
m=0

(−1)m

(2m + 1) cosh2 {(2m + 1)β/2}
. (10.2.6)

Next, again using the Taylor series of log(1 + z) about z = 0 and recalling
the definition of α, we find that

S1 = −
∞∑

n=0

∞∑
m=1

(2n + 1)
(−1)mne−α(2n+1)m/2

m

= −
∞∑

m=1

1
m

( ∞∑
n=0

(
2n(−1)mne−α(2n+1)m/2 + (−1)mne−α(2n+1)m/2

))

= −
∞∑

m=1

1
m

(
2(−1)me−3αm/2

(1 − (−e−α)m)2
+

e−αm/2

1 − (−e−α)m

)

= −
∞∑

m=1

(−1)me−3αm/2 + e−αm/2

m(1 − (−e−α)m)2
. (10.2.7)

By an analogous argument,

S2 = −
∞∑

m=1

e−3αm/2 + (−1)me−αm/2

m(1 − (−e−α)m)2
. (10.2.8)

Thus, combining (10.2.7) and (10.2.8), we deduce that

S1 − S2 =
∞∑

m=1

−(−1)me−3αm/2 − e−αm/2 + e−3αm/2 + (−1)me−αm/2

m(1 − (−e−α)m)2

= 2
∞∑

m=0

e−3(2m+1)α/2 − e−(2m+1)α/2

(2m + 1)(1 + e−(2m+1)α)2

= 2
∞∑

m=0

e−(2m+1)α/2 − e(2m+1)α/2

(2m + 1)(e(2m+1)α/2 + e−(2m+1)α/2)2

= −
∞∑

m=0

sinh{(2m + 1)α/2}
(2m + 1) cosh2{(2m + 1)α/2}

. (10.2.9)
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If we use (10.2.6) and (10.2.9) in (10.2.3) and recall that log q = −α, we
deduce that

α

∞∑
m=0

sinh{(2m + 1)α/2}
(2m + 1) cosh2{(2m + 1)α/2}

+ π

∞∑
m=0

(−1)m

(2m + 1) cosh2 {(2m + 1)β/2}

=
π2

4
−

k 3F2(1, 1, 1; 3
2 , 3

2 ; k2)

2F1( 1
2 , 1

2 ; 1; k2)
. (10.2.10)

We now invoke (10.1.3). If we substitute (10.1.3) into (10.2.10), we deduce
(10.2.1) to complete the proof. ��

It should be emphasized that the only time we used the definitions (10.1.2)
of q and q′ in our proof is in the application of (10.1.3). Thus, it would seem
that (10.1.1) is a very special result in that there are likely very few (if any)
other results like it.

We now prove (10.2.1).

Proof of (10.2.1). Our first main idea is to introduce the functions F and G
in (10.2.11) and (10.2.13), respectively, and use them to find a simpler identity
that is equivalent to (10.2.1). Define

F (α) :=
1
α

∞∑
n=0

1
(2n + 1)2 cosh{(2n + 1)α/2} . (10.2.11)

Then

F ′(α) := − 1
2α2

(
α

∞∑
n=0

sinh{(2n + 1)α/2}
(2n + 1) cosh2{(2n + 1)α/2}

+2
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)α/2}

)
. (10.2.12)

Set

G(β) := 2β
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)} = 2π2F

(
π2

β

)
, (10.2.13)

by (10.2.11) and the fact that αβ = π2. Thus, by (10.2.12),

G′(β) = 2π2F ′
(

π2

β

)(
−π2

β2

)
= α

∞∑
n=0

sinh{(2n + 1)π2/(2β)}
(2n + 1) cosh2{(2n + 1)π2/(2β)}

+ 2
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)} .

(10.2.14)
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If we define

H(β) :=
βπ2

4
− 2π

∞∑
n=0

(−1)n tanh{(2n + 1)β/2}
(2n + 1)2

, (10.2.15)

then

H ′(β) :=
π2

4
− π

∞∑
n=0

(−1)n

(2n + 1) cosh2{(2n + 1)β/2}
. (10.2.16)

In view of (10.2.14) and (10.2.16), we see that (10.2.1) is equivalent to

G′(β) = H ′(β).

It follows that for some constant c,

G(β) = H(β) + c. (10.2.17)

Clearly, from the definitions of G(β) and H(β) in (10.2.13) and (10.2.15),
respectively, both G(β) and H(β) tend to 0 as β → 0. Thus, in (10.2.17),
c = 0.

Hence, it now suffices to prove that

2β

∞∑
n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)}

=
βπ2

4
− 2π

∞∑
n=0

(−1)n tanh{(2n + 1)β/2}
(2n + 1)2

. (10.2.18)

It is easily seen that (10.2.18) is equivalent to

β
∞∑

n=−∞

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)}

+ π
∞∑

n=−∞

(−1)n tanh{(2n + 1)β/2}
(2n + 1)2

− βπ2

4
= 0. (10.2.19)

The second primary idea is to introduce a function f of a complex variable
and use contour integration to prove (10.2.19). To that end, define, for fixed
η > 0,

f(z) :=
tan(ηz)
z2 cosh z

. (10.2.20)

The function f(z) is meromorphic in the entire complex plane with a simple
pole at z = 0 and simple poles at z = (2n+1)πi/2 and z = (2n+1)π/(2η) for
each integer n. Let γRm

be a sequence of positively oriented circles centered
at the origin and with radii Rm tending to ∞ as m → ∞, where the radii Rm
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are chosen so that the circles remain at a bounded distance from all the poles
of f(z). From the definition (10.2.20) of f , it is then easy to see that

∣∣∣∣∣
∫

γRm

f(z)dz

∣∣∣∣∣�η
1

Rm
, (10.2.21)

as Rm → ∞, where the constant implied in the notation �η depends on η.
For brevity, let R(a) denote the residue of f(z) at a pole a. Then, brief

calculations show that

R(0) = η, (10.2.22)

R

(
(2n + 1)π

2η

)
= − 4η

π2(2n + 1)2 cosh{(2n + 1)π/(2η)} , (10.2.23)

R

(
(2n + 1)πi

2

)
= −4(−1)n tanh{(2n + 1)πη/2}

π2(2n + 1)2
, (10.2.24)

for each integer n. Hence, using (10.2.22)–(10.2.24) and the residue theorem,
we deduce that

1
2πi

∫
γRm

f(z)dz = η −
∑

|2n+1|<2ηRm/π

4η

π2(2n + 1)2 cosh{(2n + 1)π/(2η)}

−
∑

|2n+1|<2Rm/π

4(−1)n tanh{(2n + 1)πη/2}
π2(2n + 1)2

. (10.2.25)

Letting Rm tend to ∞ in (10.2.25) and employing (10.2.21), we conclude that

0 = η − 4η

π2

∞∑
n=−∞

1
(2n + 1)2 cosh{(2n + 1)π/(2η)}

− 4
π2

∞∑
n=−∞

(−1)n tanh{(2n + 1)πη/2}
(2n + 1)2

. (10.2.26)

Now set η = β/π in (10.2.26). Then multiply both sides by −π3/4. We then
readily obtain (10.2.19), and so this completes the proof. ��

10.3 Further Remarks on Ramanujan’s Quasi-theta
Product

Theorem 10.2.1 can easily be generalized in at least two directions.
First, in the proof of (10.2.1), we could replace f(z) by

fn(z) :=
tan(ηz)
zn cosh z

,
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where n is a positive integer exceeding 1. The generalization of (10.2.1) would
then involve Bernoulli numbers arising from the Taylor expansion of tan z
about z = 0 and Euler numbers arising from the expansion of 1/ cosh z about
z = 0.

Second, in the proof of (10.2.1), we could replace f(z) by

f(z, θ) :=
cosh(θz) tan(ηz)

z2 cosh z
,

where −1 < θ < 1. Then by a proof analogous to that given above, we could
deduce that for any complex numbers α and β with Re α,Re β �= 0, and
αβ = π2, and for any real number θ with |θ| < 1,

α
∞∑

n=0

sinh{(2n + 1)α/2} cosh{(2n + 1)θα/2}
(2n + 1) cosh2{(2n + 1)α/2}

− θα

∞∑
n=0

sinh{(2n + 1)θα/2}
(2n + 1) cosh{(2n + 1)α/2} + π

∞∑
n=0

(−1)n cos{(2n + 1)πθ/2}
(2n + 1) cosh2{(2n + 1)β/2}

=
π2

4
− 2

∞∑
n=0

cosh{(2n + 1)θα/2}
(2n + 1)2 cosh{(2n + 1)α/2} . (10.3.1)

The identity (10.3.1) is equivalent to

{ ∞∏
n=0

(
(1 − (−1)nq(2n+1−θ)/2)(1 − (−1)nq(2n+1+θ)/2)
(1 + (−1)nq(2n+1−θ)/2)(1 + (−1)nq(2n+1+θ)/2)

)2n+1
}(log q)/2

×
{ ∞∏

n=0

(1 − (−1)nq(2n+1−θ)/2)(1 + (−1)nq(2n+1+θ)/2)
(1 + (−1)nq(2n+1−θ)/2)(1 − (−1)nq(2n+1+θ)/2)

}−θ(log q)/2

×
{ ∞∏

n=1

(
(1 + (−1)nieθπi/2q′n)(1 + (−1)nie−θπi/2q′n)
(1 − (−1)nieθπi/2q′n)(1 − (−1)nie−θπi/2q′n)

)n
}πi

= exp

(
π2

4
− 2

∞∑
n=0

cosh{(2n + 1)θα/2}
(2n + 1)2 cosh{(2n + 1)α/2}

)
. (10.3.2)

When θ = 0, (10.3.1) and (10.3.2) reduce to (10.2.1) and (10.1.1), respectively.
If α, β > 0 and θ =: u + iv, where u and v are real, then (10.3.2) can be
analytically continued to the rectangle −1 < u < 1,−2π/α < v < 2π/α.

If we differentiate (10.3.1) 2k times with respect to θ and then set θ = 0,
we deduce that

α

∞∑
n=0

(2n + 1)2k−1 sinh{(2n + 1)α/2}
cosh2{(2n + 1)α/2}

(10.3.3)
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+ (−1)kβ2kπ1−2k
∞∑

n=0

(−1)n(2n + 1)2k−1

cosh2{(2n + 1)β/2}
= (4k − 2)

∞∑
n=0

(2n + 1)2k−2

cosh{(2n + 1)α/2} ,

which is valid for any integer k ≥ 1 and any complex numbers α and β with
Re α,Re β �= 0, and αβ = π2.

If we let α → ∞ (or β → 0) in (10.2.1), we deduce Leibniz’s well-known
evaluation ∞∑

n=0

(−1)n

2n + 1
=

π

4
,

while if we let α → 0 (or β → ∞) in (10.2.1), we deduce Euler’s well-known
evaluation ∞∑

n=0

1
(2n + 1)2

=
π2

8
.

(We remark that care must be taken in taking certain limits inside summation
signs above.)

Ramanujan examined several other infinite series of hyperbolic functions
in his notebooks [243] and lost notebook [244]. We cite two examples giving
evaluations of series involving cosh z that are very similar to those arising
above.

First, in Entry 16(x) of Chapter 17 in his second notebook [243], [54,
p. 134], Ramanujan asserted that

∞∑
n=0

(2n + 1)2

cosh{(2n + 1)π/2} =
π3/2

2
√

2Γ 6( 3
4 )

. (10.3.4)

In fact, it is shown in [54, pp. 134–138] that one can also evaluate in closed
form the more general sum

∞∑
n=0

(2n + 1)2m

cosh{(2n + 1)α/2} , (10.3.5)

where m is a positive integer. However, the evaluations are in terms of z :=
2F1( 1

2 , 1
2 ; 1; k2). (See [54, p. 101, equation (6.3)] for the relation between α

and k, where in [54], y = α.) Note that the sums (10.3.5) appear on the right
side of (10.3.3), and so these evaluations also automatically yield evaluations
for the left side of (10.3.3).

Second, the evaluation
∞∑

n=0

(2n + 1)2

cosh2{(2n + 1)π/2}
=

π2

12Γ 8( 3
4 )

arises in Ramanujan’s formulas for the power series coefficients of the recipro-
cals, or, more generally, quotients, of certain Eisenstein series [62, Corollary
3.9].

Multivariable generalizations of the products in (10.1.1) have been studied
by Berndt and Zaharescu [80] and S. Kongsiriwong [194].
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10.4 A Generalization of the Dedekind Eta Function

On page 330 of [244], Ramanujan defines a generalization of the Dedekind eta
function, states a transformation formula for it, and then gives three examples.
The first of the three examples is the transformation formula for the Dedekind
eta function. We first give Ramanujan’s definition, his transformation formula,
and his three examples. We then state and prove a theorem of E. Krätzel [195]
that contains, as a special case, Ramanujan’s transformation formula, but in
a slightly different form.

Define, for each positive integer s and x > 0,

φs(x) :=
√

2πx eπxζ(−s)
∞∏

n=1

(1 − e−2πxns

),

where ζ(s) denotes the Riemann zeta function.

Entry 10.4.1 (p. 330). For each positive integer s and x > 0,

φs(x) = (2π)s/2 exp
(

πζ(−1/s)
x1/s sin( π

2s )

) s−1∏
j=0

∞∏
n=1{

1 − 2 exp
(
−2π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))

× cos
(

2π
(n

x

)1/s

cos
(

π(2j + 1)
2s

))

+ exp
(
−4π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))}1/2

. (10.4.1)

We now state the special cases s = 1, 2, 3 of Entry 10.4.1.

Entry 10.4.2 (p. 330).

√
xe−πx/12

∞∏
n=1

(1 − e−2πnx) = e−π/(12x)
∞∏

n=1

(1 − e−2πn/x), (10.4.2)

1
2

√
x

π
exp
(
−2πζ(−1/2)√

x

) ∞∏
n=1

(1 − e−πxn2
)

=
∞∏

n=1

{
1 − 2e−2π

√
n/x cos

(
2π
√

n/x
)

+ e−4π
√

n/x
}

, (10.4.3)

√
x exp

(
πx

120
− 2πζ(−1/3)

3
√

x

) ∞∏
n=1

(1 − e−2πn3x)

= 2π

∞∏
n=1

{(
1 − e−2π 3

√
n/x
)(

1 − 2e−π 3
√

n/x cos
(
π
√

3 3
√

n/x
)

+ e−2π 3
√

n/x
)}

.

(10.4.4)
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The transformation formula (10.4.2) follows immediately from (10.4.1) by
setting s = 1, and is the familiar transformation formula for the Dedekind
eta function [53, p. 256, Corollary (ii)], [54, p. 43, Entry 27(iii)]. The formula
(10.4.3) follows readily from (10.4.1) when x is replaced by x/2. We have
corrected a minor misprint in the first factor of the infinite product on the
right side of (10.4.4), which arises from (10.4.1) with s = 3. In the calculation
of (10.4.4), we need the value ζ(−3) = 1

120 [271, p. 19]. We also note that the
terms with j = 0 and j = 2 are identical and that the term with j = 1 is a
perfect square when s = 3.

A result equivalent to (10.4.3) was given without proof by G.H. Hardy and
Ramanujan in Section 7.3 of [176]. It was rediscovered by D. Kim [190] and
was also proved by R. Baxter [49], who proved several results of this nature.
Finally, E.M. Wright utilized a transformation formula equivalent to Entry
10.4.1 for his treatment of partitions into powers [284].

We now state and prove Krätzel’s theorem, generalizing Entry 10.4.1. For
relatively prime positive integers a and b and | arg t| < π/(2ab), define the
generalized Dedekind eta function

ηa,b(t) := (2π)(1−b)/2eγa,b(t)
∞∏

n=1

a−1∏
ν=0

(1 − e2πiε2ν+1(4a)nb/atb

), (10.4.5)

where
εν(n) := e2πiν/n (10.4.6)

and

γa,b(t) :=
πζ(−b/a)

sin(π/(2a))
tb, (10.4.7)

where ζ(s) again denotes the Riemann zeta function. Observe that η1,1 = η(t),
the ordinary Dedekind eta function.

Theorem 10.4.1. If a and b are positive integers with (a, b) = 1 and | arg t| <
π/(2ab), then

ηa,b(t) = t−ab/2ηb,a(1/t). (10.4.8)

Proof. Taking the logarithm of both sides of (10.4.5), we find that

log ηa,b(t) =
1 − b

2
log(2π) + γa,b(t) −

a−1∑
ν=0

∞∑
n=1

∞∑
m=1

1
m

e2πiε2ν+1(4a)nb/amtb

.

(10.4.9)
Recall the integral representation

e−t =
1

2πi

∫ c+i∞

c−i∞
Γ (s)t−sds, (10.4.10)

where Re t > 0 and c > 0. Using (10.4.10) in (10.4.9) with t replaced by
2πε2ν+1−a(4a)tb and with c > a/b, noting that the hypothesis | arg t| <
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π/(2ab) ensures the applicability of (10.4.10), inverting the order of sum-
mation and integration, and twice using the familiar series representation of
the Riemann zeta function, we find that

log ηa,b(t) =
1 − b

2
log(2π) + γa,b(t)

−
a−1∑
ν=0

1
2πi

∫ c+i∞

c−i∞
Γ (s)ζ(s + 1)ζ(bs/a)

(
2πε2ν+1−a(4a)tb

)−s
ds

=
1 − b

2
log(2π) + γa,b(t)

− 1
2πi

∫ c+i∞

c−i∞
Γ (s)ζ(s + 1)ζ(bs/a)

sin(πs/2)
sin(πs/(2a))

(2πtb)−sds,

(10.4.11)

where in the last step we inverted the order of summation to sum the a roots
of unity. Recall the functional equation of the Riemann zeta function given
by [271, p. 25]

ζ(s + 1) = −(2π)s πζ(−s)
Γ (s + 1) sin(πs/2)

. (10.4.12)

Using (10.4.12) in (10.4.11) along with the functional equation Γ (z + 1) =
zΓ (z), we find that

log ηa,b(t) =
1 − b

2
log(2π) + γa,b(t) +

1
2πi

∫ c+i∞

c−i∞

πζ(−s)ζ(bs/a)
s sin(πs/(2a))

t−bsds.

Replacing s by as above, we arrive at

log ηa,b(t) =
1 − b

2
log(2π) + γa,b(t)

+
1

2πi

∫ ca+i∞

ca−i∞

πζ(−as)ζ(bs)
s sin(πs/2)

t−absds. (10.4.13)

We now shift the line of integration to −c0 − i∞,−c0 + i∞, c0 > 1/a, by
integrating over a rectangle CT with vertices c ± iT,−c0 ± iT , where T > 0,
applying the residue theorem, and letting T → ∞. Because, uniformly in any
vertical strip [271, p. 81], ζ(σ + iT ) = O(T k), as T → ∞, for some constant
k that may depend on the particular vertical strip, we easily see that the
integrals over the horizontal sides of CT tend to 0 as T tends to ∞. On the
interior of CT the integrand on the right side of (10.4.13) has simple poles at
s = 1/b and −1/a and a double pole at s = 0. Let Rα denote the residue of
a pole at α. Lastly, replace s by −s. After all this, we deduce from (10.4.13)
that

log ηa,b(t) =
1 − b

2
log(2π) + γa,b(t) + R1/b + R0 + R−1/a
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+
1

2πi

∫ c0+i∞

c0−i∞

πζ(as)ζ(−bs)
s sin(πs/2)

tabsds. (10.4.14)

Straightforward calculations show that

R−1/a = −γa,b(t) and R1/b = γb,a(1/t). (10.4.15)

Since [271, p. 20]

ζ(s) = −1
2
− 1

2
log(2π)s + · · · ,

we find that
R0 =

1
2
(b − a) log(2π) − 1

2
ab log t. (10.4.16)

Putting (10.4.15) and (10.4.16) in (10.4.14), we deduce that

log ηa,b(t) =
1 − a

2
log(2π) + γb,a(1/t) − 1

2
ab log t

+
1

2πi

∫ c0+i∞

c0−i∞

πζ(as)ζ(−bs)
s sin(πs/2)

tabsds. (10.4.17)

Comparing (10.4.17) with (10.4.13), we see that on the right side of (10.4.17)
the roles of a and b have been reversed, there is an extra additive factor
of − 1

2ab log t, and that t has been replaced by 1/t. In other words, upon
exponentiation, we obtain (10.4.8). ��

We now show that Krätzel’s theorem yields Entry 10.4.1. First, observe
that in (10.4.1), the terms with j = ν and j = s− ν − 1 are identical. Thus, if
s is even, the first product in (10.4.1) can be taken over 0 ≤ j ≤ s/2− 1, and
the square root on the product on the right side can be deleted. If s is odd,
then the term with j = (s − 1)/2 is, in fact, a perfect square.

Now examine Theorem 10.4.1, with tb replaced by x, a = 1, and b = s.
Consider the product of the terms with index ν and s − ν − 1 on the right
side. These are

(1 − e2πi(cos πν
2s +i sin

πν
2s )(n/x)1/s

)(1 − e2πi(− cos
πν
2s +i sin

πν
2s )(n/x)1/s

)

= 1 − 2e−2π(n/x)1/s sin
πν
2s cos(2π(n/x)1/s cos πν

2s ) + e−4π(n/x)1/s sin
πν
2s .

The term with ν = (s − 1)/2 in Theorem 10.4.1 is identical to the corre-
sponding term in (10.4.1). Thus, when simplified, Ramanujan’s Entry 10.4.1
becomes identical with Theorem 10.4.1 when simplified, after the parameters
are specialized and changed as described above. With these observations, we
restate Entry 10.4.1.

Entry 10.4.3 (p. 330). For each positive even integer s and x > 0,

φs(x) = (2π)s/2 exp
(

πζ(−1/s)
x1/s sin( π

2s )

) s/2−1∏
j=0

∞∏
n=1
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{
1 − 2 exp

(
−2π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))

× cos
(

2π
(n

x

)1/s

cos
(

π(2j + 1)
2s

))

+ exp
(
−4π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))}1/2

;

For each positive odd integer s and x > 0,

φs(x) = (2π)s/2 exp
(

πζ(−1/s)
x1/s sin( π

2s )

)
(1 − e−2π(n/x)1/s

)
(s−3)/2∏

j=0

∞∏
n=1{

1 − 2 exp
(
−2π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))

× cos
(

2π
(n

x

)1/s

cos
(

π(2j + 1)
2s

))

+ exp
(
−4π

(n

x

)1/s

sin
(

π(2j + 1)
2s

))}1/2

.

10.5 Two Entries on Page 346

We recall Ramanujan’s notation in the theory of elliptic functions [54, p. 101].
Let

z := 2F1( 1
2 , 1

2 ; 1, k2), (10.5.1)

where 2F1 denotes the ordinary or Gaussian hypergeometric function, and k,
0 < k < 1, denotes the modulus. Furthermore, put

q := e−y, (10.5.2)

where

y := π
2F1( 1

2 , 1
2 ; 1, 1 − k2)

2F1( 1
2 , 1

2 ; 1, k2)
. (10.5.3)

Recall that the complementary modulus k′ is defined by k′ =
√

1 − k2, 0 <
k′ < 1.

Entry 10.5.1 (p. 346). For q defined by (10.5.2) and θ and φ defined by

zθ =
∫ φ

0

du√
1 − k2 sin2 u

, (10.5.4)

we have

log tan
(

π

4
+

θ

2

)
+ 4

∞∑
n=0

(−1)nq2n+1 sin(2n + 1)θ
(2n + 1)(1 − q2n+1)

= log tan
(

π

4
+

φ

2

)
.



10.5 Two Entries on Page 346 239

Entry 10.5.1 is identical to Entry 16(v) in Chapter 18 of Ramanujan’s
second notebook [243], [54, p. 175].

For reasons that will become apparent in the next proof, we replace Ra-
manujan’s θ′ in the next entry by θ∗.

Entry 10.5.2 (p. 346). Define θ∗ and φ by

zθ∗ :=
∫ φ

0

du√
1 − k′2 sin2 u

, (10.5.5)

where z and k′ are as above. Then

θ∗ + 2
∞∑

n=1

qn sinh(2nθ∗)
n(1 + q2n)

= log tan
(

π

4
+

φ

2

)
. (10.5.6)

Proof. We begin with the following principle in the theory of elliptic functions
found in Section 18 of Chapter 18 in Ramanujan’s second notebook [243], [54,
pp. 177–179]. Suppose that we have an equation of the sort

Ω(k, e−y, z, θ, φ) = 0. (10.5.7)

We now want to write a new equation with k replaced by k′. From (10.5.1),
we see that z will be replaced by

z′ := 2F1( 1
2 , 1

2 ; 1, k′2); (10.5.8)

from (10.5.3), y will be replaced by

y′ := π
2F1( 1

2 , 1
2 ; 1, 1 − k′2)

2F1( 1
2 , 1

2 ; 1, k′2)
; (10.5.9)

and from Entry 18(iv) of Chapter 18 in the second notebook [243], [54, p. 179],
θ will be replaced by

θ′ := iθz/z′, (10.5.10)

and φ will be replaced by

φ′ := i log tan
(

π

4
+

φ

2

)
. (10.5.11)

Thus, we obtain a new equation

Ω

(
k′, e−y′

, z′, iθz/z′, i log tan
(

π

4
+

φ

2

))
= 0. (10.5.12)

We are going to apply this principle, but with the roles of the variables
reversed. Thus, taking Entry 15(iv) of Chapter 18 in Ramanujan’s second
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notebook [243], [54, p. 172], we replace the variables by their counterparts
with primes ′ on them. Thus, we have

θ′ +
∞∑

n=1

sin(2nθ′)
n cosh(ny′)

= φ′. (10.5.13)

We now use (10.5.12) to convert (10.5.13) to an identity involving θ. Hence,

iθ′z′

z
+

∞∑
n=1

sin(2niθ′z′/z)
n cosh(ny)

= φ′ = i log tan
(

π

4
+

φ

2

)
, (10.5.14)

by (10.5.11). By (10.5.4), with the roles of the pairs θ, k and θ′, k′ reversed,

z′θ′ =
∫ φ

0

du√
1 − k′2 sin2 u

. (10.5.15)

Comparing (10.5.15) with (10.5.5), we see that z′θ′ = zθ∗. Using this equality
and (10.5.2) in (10.5.14), we deduce that

iθ∗ + 2i

∞∑
n=1

qn sin(2nθ∗)
n(1 + q2n)

= i log tan
(

π

4
+

φ

2

)
,

which upon canceling i throughout yields (10.5.6). ��

10.6 A Continued Fraction

Entry 10.6.1 (p. 370). Let K = K(k) denote the complete elliptic integral
of the first kind associated with the modulus k, and let K ′ = K(k′) be the
complete elliptic integral of the first kind associated with the complementary
modulus k′ =

√
1 − k2. Then, if n > 0,

πnK

2

⎧⎨
⎩

1
n2K2

+ 4
∞∑

j=1

(
qj

1 + q2j
· 1
n2K2 + π2j2

)⎫⎬
⎭

=
1
n +

k2

n +
22

n +
(3k)2

n +
42

n +
(5k)2

n + · · · . (10.6.1)

Proof. In Entry 12(i) of Chapter 18 in his second notebook, Ramanujan
recorded the continued fraction

1
2

+
∞∑

j=1

sech(jy)
1 + (jm)2

=
z

2 +
(mz)2x

2 +
(2mz)2

2 +
(3mz)2x

2 +
(4mz)2

2 + · · · ,

(10.6.2)
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where z := 2K/π, x = k2, y = πK ′/K, and m > 0. For a proof, see [54,
p. 163]. Multiply both sides of (10.6.2) by 2 and replace mz by 2/n to obtain
the equivalent continued fraction

1+2
∞∑

j=1

sech(jy)
1 + (2j/(nz))2

=
z

1 +
(k/n)2

1 +
(2/n)2

1 +
(3k/n)2

1 +
(4/n)2

1 + · · · .

(10.6.3)
Multiplying both sides of (10.6.3) by 1/n, using the definition z := 2K/π, and
rearranging, we find the equivalent continued fraction

1
n

⎛
⎝1 +

2n2K2

π2

∞∑
j=1

sech(jy)
(nK/π)2 + j2

⎞
⎠

=
2K/π

n +
k2

n +
22

n +
(3k)2

n +
42

n + · · · . (10.6.4)

Lastly, multiply both sides of (10.6.4) by π/(2K), set q = e−y in the definition
of sech, and rearrange slightly to achieve (10.6.1). ��

The previous entry has a fascinating corollary found in Section 12 of Chap-
ter 18 of Ramanujan’s second notebook [243], [54, p. 164].

10.7 Class Invariants

We begin by recalling the definitions of class invariants by both Ramanujan
and H. Weber [281]. As usual, set

χ(q) := (−q; q2)∞.

For
q := exp(−π

√
n),

where n is a natural number, Ramanujan’s class invariants Gn and gn are
defined by

Gn := 2−1/4q−1/24χ(q) and gn := 2−1/4q−1/24χ(−q).

In the notation of Weber,

Gn = 2−1/4f(
√
−n) and gn = 2−1/4f1(

√
−n).

Ramanujan devoted considerable energy to calculating over 100 class invari-
ants. An account of most of Ramanujan’s work can be found in Chapter 34
of [57].

On page 342 in [244], Ramanujan provides a list of class invariants from
Weber’s book [281, pp. 722–724]. It is clear that he did not merely copy this list
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of invariants, because at the top of page 342, Ramanujan lists two mistakes
that Weber made in calculating f(

√
−41). Weber’s table [281, pp. 721–726]

contains further incorrect values of class invariants. J. Brillhart and P. Morton
carefully checked the entire table and published a complete list of errors [95],
which, of course, contains the mistakes noticed much earlier by Ramanujan.
Ramanujan’s methods for calculating class invariants have largely remained
in impenetrable darkness, and so it is again unfortunate that Ramanujan left
no clues about his methods of calculation. We now provide this table below,
with two trivial misprints corrected.

Entry 10.7.1 (p. 342).

f1(
√
−20) = t

8
√

8, t8 − 1 +
√

5
2

(2t4 + 1) = 0.

f(
√
−27) = t

3
√

2, t9 − 3t6 − 3t3 − 1 = 0.

f1(
√
−26) = t

4
√

2, t6 − t4 − 3 +
√

13
2

(t2 + 1) = 0.

f(
√
−29) = t

4
√

2, 2t12 − 9t8 − 8t4 − 5 =
√

29(t4 + 1)2.

f(
√
−35) = t, t3 − 2 = (1 +

√
5)(t2 − t).

f1(
√
−36) = t

8
√

2, t6 − 4t3 − 2 = 2
√

3(t3 + 1).

f1(
√
−38) = t

4
√

2, t6 − 2t4 − (2t2 + 1)(1 +
√

2) = 0.

f(
√
−39) = t

√
2, t6 − 3 +

√
13

2
(t3 + 1) = 0.

f(
√
−41) = t

4
√

2,

(
t2 +

1
t2

)2

− 5 +
√

41
2

(
t2 +

1
t2

)
+

7 +
√

41
2

= 0.

f1(
√
−44) = t

8
√

8, t12 − (6 + 2
√

11)t8 + (8 + 2
√

11)t4 − (3 +
√

11) = 0.

f1(
√
−50) = t

4
√

2, t3 − t2 =
1 +

√
5

2
(t + 1).

f(
√
−51) = t

3
√

2, t9 − (4 +
√

17)t6 − t3 − 1 = 0.

f1(
√
−52) = t

8
√

8, t8 − 2(4 +
√

13)t4 − 3 +
√

13
2

= 0.

f(
√
−63) = t

√
2,

t6 + 3t3 − 1
t6 − t3 + 1

=

√
7
3
.

f(
√
−99) = t

3
√

2, t9 − (12 + 2
√

33)t6 − (4 +
√

33)t3 − 1 = 0.
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Formulas for the Power Series Coefficients of
Certain Quotients of Eisenstein Series

11.1 Introduction

In their epic paper [176], [242, pp. 276–309], G.H. Hardy and S. Ramanujan
found an asymptotic formula for the partition function p(n) that arises from
the power series coefficients of the reciprocal of the Dedekind eta function. As
they indicated near the end of their paper, their methods also apply to several
analogues of the partition function generated by modular forms of negative
weight that are analytic in the upper half-plane. In their last published paper
[177], [242, pp. 310–321], they considered a similar problem for the coefficients
of modular forms of negative weight having a simple pole in a fundamental
region, and in particular, they applied their theorem to find interesting series
representations for the coefficients of the reciprocal of the Eisenstein series
E6(τ). Although there are some similarities in the methods of these papers,
the principal ideas are quite different in [177] from those in [176]. In [176],
Hardy and Ramanujan introduced their famous circle method, and since that
time the ideas in this paper have had an enormous impact in additive analytic
number theory. Although their paper [177] has not had as much influence,
the ideas in [177] have been extended by, among others, J. Lehner [201],
H. Petersson [228], [229], [230], H. Poincaré [231], and H.S. Zuckerman [291].
Additional comments on [177] can be found in the third edition of [242, p. 387].

While confined to nursing homes and sanitariums during his last two years
in England, Ramanujan wrote several letters to Hardy about the coefficients
in the power series expansions of certain quotients of Eisenstein series. A few
pages in his lost notebook are also devoted to this topic. All of this material
can be found in [244, pp. 97–126], and the letters with commentary can be
found in the book by Berndt and R.A. Rankin [74, pp. 175–191]. In these let-
ters and in the lost notebook, Ramanujan claims formulas for the coefficients
of several quotients of Eisenstein series not examined by Hardy and him in
[177]. In fact, for some of these quotients, the main theorem of [177] needs
to be moderately modified and improved. For other examples, a significantly
stronger theorem is necessary. Ramanujan obviously wanted another exam-

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 12, c© Springer Science+Business Media, LLC 2009
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ple to be included in their paper [177], for in his letter of 28 June 1918 [74,
pp. 182–183], he wrote, “I am sending you the analogous results in case of g2.
Please mention them in the paper without proof. After all we have got only
two neat examples to offer, viz. g2 and g3. So please don’t omit the results.”
This letter was evidently written after galley proofs for [177] were printed, be-
cause Ramanujan’s request went unheeded. The functions g2 and g3, defined
in (9.2.2) and (9.2.3), respectively, are the familiar invariants in the theory of
elliptic functions and are constant multiples of the Eisenstein series E4(τ) and
E6(τ), respectively. This letter was also evidently written before Ramanujan
obtained further examples.

In this chapter, we establish the formulas for the coefficients of those quo-
tients of Eisenstein series found in [244, pp. 102–104, 117]. In Ramanujan’s
notation, the three relevant Eisenstein series are defined, for |q| < 1, by

P (q) := 1 − 24
∞∑

k=1

kqk

1 − qk
, (11.1.1)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
, (11.1.2)

and

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
. (11.1.3)

(The notation above is that used in Ramanujan’s paper [240], [242, pp. 136–
162] and in his lost notebook [244]. In his notebooks [243], Ramanujan replaced
P,Q, and R by L,M, and N, respectively.) In more contemporary notation,
the Eisenstein series E2j(τ) is defined for j > 1 and Im τ > 0 by

E2j(τ) :=
1
2

∑
m1,m2∈Z

(m1,m2)=1

(m1τ + m2)−2j = 1 − 4j

B2j

∞∑
k=1

k2j−1qk

1 − qk

= 1 − 4j

B2j

∞∑
r=1

σ2j−1(r)qr, (11.1.4)

where q = e2πiτ , Bj , j ≥ 0, denotes the jth Bernoulli number, and σν(n) =∑
d|n dν . Thus, for q = exp(2πiτ), E4(τ) = Q(q) and E6(τ) = R(q), which

have weights 4 and 6, respectively [255, p. 50]. Since (11.1.4) does not converge
for j = 1, the Eisenstein series E2(τ) must be defined differently. First let

E∗
2 (τ) := P (q), q = e2πiτ . (11.1.5)

Then E2(τ) is defined by
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E2(τ) := E∗
2 (τ) − 3

π Im τ
. (11.1.6)

The function E2(τ) satisfies the functional equation of a modular form of
weight 2 [255, pp. 67–68], but it is not a modular form.

Central for our proofs are Ramanujan’s differential equations for Eisenstein
series, namely [240, equations (30)], [242, p. 142],

q
dP

dq
=

P 2(q) − Q(q)
12

, (11.1.7)

q
dQ

dq
=

P (q)Q(q) − R(q)
3

, (11.1.8)

and

q
dR

dq
=

P (q)R(q) − Q2(q)
2

. (11.1.9)

Next define

B(q) := 1 + 24
∞∑

k=1

(2k − 1)q2k−1

1 − q2k−1
, |q| < 1. (11.1.10)

As will be seen, B(q) is the (unique) modular form of weight 2 with multiplier
system identically equal to 1 on the modular group Γ0(2).

As indicated above, in [177], Hardy and Ramanujan obtained representa-
tions for the coefficients of 1/R(q) as infinite series. In this chapter, we first
establish Ramanujan’s similar claims for the series

1
Q(q)

,
Q(q)
R(q)

,
P (q)
R(q)

,
P 2(q)
R(q)

, and
P (q)
Q(q)

.

To prove the results in this first class of formulas, a moderate modification
of the theorem of Hardy and Ramanujan is needed. This amended theorem is
proved in detail in Section 11.2. The next four sections are devoted to proofs
of several of Ramanujan’s formulas for coefficients that can be derived from
this key theorem. Most of the results in the first part of this chapter, i.e.,
through Section 11.6, can be found in P. Bialek’s doctoral dissertation [84],
or in a paper by Berndt and Bialek [61].

The representations in the second class, namely, Ramanujan’s formulas for
the coefficients of 1/B(q) and 1/B2(q), are much harder to prove. To establish
the first main result, we need an extension of Hardy and Ramanujan’s theorem
due to Petersson [228]. To prove the second primary result, we need to first
extend work of Poincaré [176], Petersson [228], [229], [230], and Lehner [201]
to functions with double poles, which are not examined in the work of any
of these authors. The contents of the second part of this chapter, wherein
these two remarkable formulas are proved, i.e., beginning with Section 11.7,
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are taken from a paper by Berndt, Bialek, and A.J. Yee [62]. Three further
formulas of Ramanujan follow from one of the two key formulas, and these
are also proved here.

Ramanujan claims that the second set of assertions follow in part from
eight identities for Eisenstein series and theta functions which he states with-
out proofs at the beginning of his letter [74, pp. 189–190]. Indeed, these eight
identities are used in our proofs.

In Section 11.7, we prove the eight identities cited above. Section 11.8
contains a proof of Ramanujan’s formula for the coefficients of 1/B(q). In
Section 11.9, we show that three of Ramanujan’s claims are consequences
of the claim proved in Section 11.8. Lastly, in Section 11.10, we first prove
an analogue for double poles of Hardy and Ramanujan’s chief theorem, after
which we prove Ramanujan’s formula for the coefficients of 1/B2(q).

As we shall see in the sequel, the series found by Hardy and Ramanujan are
very rapidly convergent, even more so than those arising from modular forms
analytic in the upper half-plane, so that truncating a series, even with a small
number of terms, provides a remarkable approximation. Using Mathematica,
we calculated several coefficients and series approximations for the functions
1/B(q) and 1/B2(q). As will be seen from the first table, the coefficient of
q10 in 1/B(q), for example, has 17 digits, while just two terms of Ramanu-
jan’s infinite series representation calculate this coefficient with an error of
approximately 0.0003. Although we do not provide details, we calculated the
coefficients of 1/B2(q) up to n = 50. To demonstrate the rapid convergence of
Ramanujan’s series, we remark that for n = 20, 30, 40, and 50, the coefficients
have, respectively, 29, 43, 57, and 70 digits, while two-term approximations
give, respectively, 29, 42, 55, and 66 of these digits.

One of Ramanujan’s letters to Hardy [244, pp. 97–101] is devoted to estab-
lishing upper and lower bounds for the number of terms in the representation
for the coefficients of 1/R(q) needed to explicitly determine the actual (in-
tegral) coefficients. Although details are given in [244], expanded arguments
can be found in Bialek’s thesis [84] and in Chapter 12 of this book.

Different kinds of formulas for coefficients of modular forms have recently
been established by J.H. Bruinier, W. Kohnen, and K. Ono [96].

We complete the introduction by setting notation. The set of rational
integers is denoted by Z, with Z+ denoting the set of positive integers. The
upper half-plane H is defined by

H = {τ : Im τ > 0}.

Throughout this chapter, we consider quotients of Eisenstein series that
are not analytic in the upper half-plane. Each quotient is analytic in some
disk, |q| < q0 < 1, where q0 is not necessarily the same at each appearance.
The residue of a function f(τ) at a pole α is denoted by Res(f, α). The full
modular group is denoted by Γ (1), and the modular subgroup Γ0(2) of Γ (1)
is defined by
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Γ0(2) =

{
T (τ) =

aτ + b

cτ + d

∣∣∣∣ a, b, c, d ∈ Z; ad − bc = 1; c even

}
.

We let P1 denote the fundamental region

P1 = {τ : Im τ > 0, − 1
2 < Re τ < 1

2 , |τ | > 1}.

� z � 1 � � 1 � z � � 1

 � 1
2

� Ε  1
2

� Ε0

P

Further fundamental regions are P2, the region in H bounded by the three
circles |τ | = 1, |τ + 1| = 1, and |τ − 1| = 1; P3, the region in H bounded by
the circles |τ − 1| = 1 and |τ − 1

3 | = 1
3 and the line Re τ = 1

2 ; and P4, the
region in H bounded by the circle |τ + 1| = 1 and the lines Re τ = − 3

2 and
Re τ = − 1

2 . However, the fundamental region most important for us is the
fundamental region P in H bounded by the circles |τ + 1| = 1 and |τ | = 1
and the lines Re τ = − 1

2 − ε and Re τ = 1
2 − ε, where 0 < ε < 1.

11.2 The Key Theorem

The principal tool in proving Ramanujan’s formulas is the following theorem,
which is essentially due to Hardy and Ramanujan [177], [242, pp. 312, 316].
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However, we need to modify Hardy and Ramanujan’s theorem slightly (by
refining the estimate of their integral). In particular, in two of our applications,
we examine 1/Q(q), which has a pole at a point on the boundary of P1, and
so we need to work on the fundamental region P instead of P1, both defined
at the end of Section 11.1. For the convenience of readers who may be reading
this chapter while consulting or comparing it with Hardy and Ramanujan’s
paper [177], we have adhered to the notation of [177]. In particular, they set
q = eπiτ instead of the more customary q = e2πiτ and therefore consider
functions with arguments q2.

Theorem 11.2.1. Suppose that f(q) = f(eπiτ ) = ϕ(τ) is analytic for q = 0,
is meromorphic in the unit circle, and satisfies the functional equation

ϕ(τ) = ϕ

(
aτ + b

cτ + d

)
(cτ + d)n, (11.2.1)

where a, b, c, d ∈ Z; ad − bc = 1; and n ∈ Z+. If ϕ(τ) has only one pole in
the fundamental region P1, a simple pole at τ = α with residue A, then

f(q) = −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

, |q| < q0, (11.2.2)

and
0 = −2πiA

∑ 1
(cα + d)n+2

1
1 − (q/q)2

, |q| > 1, (11.2.3)

where

q = exp
((

aα + b

cα + d

)
πi

)
,

and the summation runs over all pairs of coprime integers (c, d) that yield
distinct values for the set {q,−q}. Moreover, for fixed c and d, a and b are
any integral solutions of

ad − bc = 1. (11.2.4)

Proof. Consider the integral

1
2πi

∫
Hm

f(z)
z − q

dz, (11.2.5)

where f is a function that satisfies the conditions specified in the theorem,
Hm is a simple closed contour that is very close to (to be made more precise
in the sequel) and inside (or perhaps touching) the unit circle, and q is fixed
and inside Hm. By Cauchy’s theorem, if |q| < 1,

1
2πi

∫
Hm

f(z)
z − q

dz = f(q) + Σm Res, (11.2.6)

where Σm Res is the sum of the residues of f(z)/(z− q) at the poles of f that
are inside Hm. If we can show that the integral tends to zero as m → ∞, then
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it will follow that f(q) = −Σ Res, where the sum is over all residues of poles
in the interior of |z| = 1.

First, we construct a contour Hm that will allow us to easily evaluate the
integral. Our contour Hm is based on Farey fractions of order m. For basic
properties of the Farey fractions of order m, which we denote by Fm, see, for
example, [223, pp. 297–300]. For instance, if h′/k′ < h/k are two adjacent
Farey fractions in Fm, then

hk′ − h′k = 1; (11.2.7)

also,
k′ + k > m. (11.2.8)

We now construct the desired contour. Suppose h′/k′ < h/k are adja-
cent Farey fractions in Fm. Construct the two semicircles in H that have the
segments(

h′

k′ ,
(1 + 2ε)h′ + 2h

(1 + 2ε)k′ + 2k

)
and

(
(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
h

k

)
(11.2.9)

on the real axis as their diameters, where ε > 0. The inequalities

h′

k′ <
h + 2h′

k + 2k′ <
h′ + 2h

k′ + 2k
<

h

k
, (11.2.10)

which follow from (11.2.7), imply that the circles intersect if we choose ε
sufficiently small.

Let us say that N is their intersection point in the upper half-plane, ωL is
the arc from h′/k′ to N , ωR is the arc from N to h/k, and ω is the union of
ωL and ωR.

ΩRΩL
N

h'
k'

�1 � 2 Ε��h � 2 h'
�1 � 2 Ε��k � k'

�1� 2 Ε� h' � 2 h
�1 � 2 Ε� k' � 2�k

h
k

Repeat the process for each adjacent pair of Farey fractions between 0 and
1. Thus we obtain a path from 0 to 1. Construct the mirror image of this path
on the interval [−1, 0], and call the entire contour (from −1 to 1) Ωm.
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If we regard Ωm as being in the τ -plane, then the corresponding path in
the q-plane, where q = eπiτ , is a simple closed contour that starts and ends at
−1 and does not go outside the unit circle. This is our desired contour Hm.
(Eventually, we shall let m go to ∞, so that Hm approaches the unit circle,
as will be shown later.)

Now we show that each segment ωL of the path Ωm is the preimage of
part of the left-hand boundary of the fundamental region P in H bounded
by the circles |τ + 1| = 1 and |τ | = 1 and the lines Re τ = − 1

2 − ε and
Re τ = 1

2 − ε under some modular transformation, and that each segment
ωR is the preimage of the right-hand boundary of P and a short line segment
under some modular transformation. Later we use these properties to estimate
f on the contour Ωm.

If h′/k′ < h/k are adjacent Farey fractions, then

T1(τ) :=
k′τ − h′

−kτ + h
and T2(τ) :=

kτ − h

k′τ − h′ (11.2.11)

are modular transformations because hk′ − h′k = 1. These are the modular
transformations to which we referred in the previous paragraph.

We first examine the transformation T1. Note that under T1, the preimages
of the points i∞, 1

2 − ε, − 1
2 − ε, 1, and −1 are

h

k
,

(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
(1 + 2ε)h − 2h′

(1 + 2ε)k − 2k′ ,
h + h′

k + k′ , and
h − h′

k − k′ ,

(11.2.12)
respectively. Recall that, in the extended complex plane, modular transfor-
mations map the family of all circles and straight lines onto itself, and note
from the definition of T1 that T1(τ̄) = T1(τ).

These imply that the preimages of the half-line Re τ = 1
2 − ε, Im τ ≥ 0,

the half-line Re τ = − 1
2 − ε, Im τ ≥ 0, and the upper half of the unit circle

are the semicircles in the upper half-plane H that have the segments on the
real axis(

(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
h

k

)
,

(
h

k
,

(1 + 2ε)h − 2h′

(1 + 2ε)k − 2k′

)
, and

(
h′ − h

k′ − k
,

h′ + h

k′ + k

)

(11.2.13)
as their diameters, respectively. Unless otherwise stated, the semicircles in
this chapter are assumed to be in H with their diameters on the real axis.

Similarly, under the transformation T2, the preimages are the semicircles
that have the segments
(

h′

k′ ,
(1 − 2ε)h′ − 2h

(1 − 2ε)k′ − 2k

)
,

(
h′

k′ ,
(1 + 2ε)h′ + 2h

(1 + 2ε)k′ + 2k

)
, and

(
h′ − h

k′ − k
,

h′ + h

k′ + k

)

(11.2.14)
as their diameters, respectively. Also, the preimage of the semicircle centered
at −1 with radius 1 is the semicircle with the segment



11.2 The Key Theorem 251

(
h + 2h′

k + 2k′ ,
h

k

)
(11.2.15)

as its diameter.
From (11.2.9) and (11.2.14), we see that T2 maps ωL into the half-line

Re τ = − 1
2 − ε, Im τ ≥ 0. Also, by (11.2.9) and (11.2.13), we see that T1

maps ωR into the half-line Re τ = 1
2 − ε, Im τ ≥ 0.

Under T1, the image of the left semicircle is the semicircle with the segment
(0, 2/(1 + 2ε)) as its diameter, while the image of the right semicircle is the
half-line Re τ = 1

2 − ε, Im τ ≥ 0. The images intersect at the point

τ1 :=
(

1
2
− ε

)
+ i

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε
; (11.2.16)

so τ1 must be the image of N . Thus the image of ωR is the half-line

Re τ =
1
2
− ε, Im τ ≥

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε
. (11.2.17)

Similarly, under T2, the images of the semicircles are the half-line Re τ =
− 1

2 − ε, Im τ ≥ 0, and the semicircle with the segment (−2/(1 − 2ε), 0) as its
diameter. These images intersect at

τ2 :=
(
−1

2
− ε

)
+ i

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
,

the image of N . Thus the image of wL is the half-line

Re τ = −1
2
− ε, Im τ ≥

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
. (11.2.18)

The intersection of the line Re τ = 1
2 − ε and the upper half of the unit

circle is the point

τ3 :=
(

1
2 − ε

)
+ i
√

3
4 + ε − ε2 , (11.2.19)

which is the lowermost point on the right-hand boundary of P . Similarly, the
lowermost point on the left-hand boundary of P is

τ4 :=
(
− 1

2 − ε
)

+ i
√

3
4 + ε − ε2 .

Note that for ε > 0,
√

3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε
<

√
3
4

+ ε − ε2 , (11.2.20)

because
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1�1 �2
1 � 2 Ε

� 1
2

� Ε  1
2

� Ε0

Τ1
Τ2

�1

2
1�2 Ε

3
4 − 3

2ε + ε2 − 2ε3 <
(

3
4 + ε − ε2

)
(1 + 2ε) = 3

4 + 5
2ε + ε2 − 2ε3.

Similarly, √
3
4

+ ε − ε2 <

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
. (11.2.21)

By (11.2.17) and (11.2.18), inequalities (11.2.20) and (11.2.21) imply that T2

maps ωL onto part of the left-hand boundary of P , while the transformation
T1 maps ωR into the right-hand boundary of P and a line segment below the
right-hand boundary of P . We denote by �1 the line segment that has τ1 and
τ3 as its endpoints. Note that by (11.2.16) and (11.2.19), the length of �1 tends
to 0 as ε tends to 0.

Also, if ωL, ωR, and ω are curves in the τ -plane, then let CL, CR, and C

be the corresponding arcs in the q-plane, where q = eπiτ .
Next we obtain an estimate for the integral of f(z)/(z − q) over CR, one

segment of Hm. We then use this to obtain an estimate of the integral over all
of Hm. We begin by finding an upper bound for |f | on CR (which is equivalent
to finding an upper bound for |ϕ| on ωR).

Recall that f(q) = f(eπiτ ) = ϕ(τ) is analytic at q = 0. So limq→0 f(q)
exists and limτ→i∞ ϕ(τ) exists. Recall also that ϕ has only one pole in each
fundamental region. So ϕ has only one pole in P1 and one pole in P4. Thus we
see that by our choice of ε we can avoid having a pole on the left- or right-hand
boundary of P . Since limτ→i∞ ϕ(τ) exists, we know that |ϕ(τ)| is bounded
on the right- and left-hand boundaries of P .

Now consider the line segment �1. If ε is sufficiently small, then �1 is in
at most two fundamental regions, P2 and P3. Since each of these regions has
only one pole of ϕ, we can avoid having a pole on �1 by choosing ε carefully.
Thus, |ϕ(τ)| is bounded on �1 as well. So we can say that

|ϕ| ≤ M (11.2.22)
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on �1 and the right- and left-hand boundaries of P , where M is some absolute
constant. Note that M is independent of m, where m is the order of Fm.

By the functional equation (11.2.1),

|ϕ(τ)| =
∣∣∣∣ϕ
(

k′τ − h′

−kτ + h

)∣∣∣∣ | − kτ + h|n. (11.2.23)

If τ is on wR, then, by (11.2.22) and (11.2.23),

|ϕ(τ)| ≤ M | − kτ + h|n = Mkn|τ − h/k|n, (11.2.24)

because T1 maps ωR onto �1 and the right-hand boundary of P . For τ on
ωR1 , the quantity |τ − h/k| is maximized when τ = N . We need to estimate
|N −h/k|. By (11.2.16), N is the preimage of τ1 under the transformation T1,
and so

N = T−1
1 (τ1) =

hτ1 + h′

kτ1 + k′ .

Thus, by (11.2.7) and (11.2.16),
∣∣∣∣N − h

k

∣∣∣∣ = 1∣∣kk′ + k2τ1

∣∣
=

1∣∣∣∣∣∣kk′ + k2

(
1
2
− ε

)
+ ik2

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε

∣∣∣∣∣∣
=

1√(
kk′ + k2( 1

2 − ε)
)2 + k4

( 3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε

)

<
1√(

1
2kk′ + 1

4k2
)2 + 3

16k4

=
2

k
√

k2 + kk′ + k′2
, (11.2.25)

for ε sufficiently small.
On ωR, by (11.2.24) and (11.2.25),

|ϕ(τ)| < Mkn

(
2

k
√

k2 + kk′ + k′2

)n

=
2nM

(k2 + kk′ + k′2)n/2
. (11.2.26)

Thus, we have obtained a bound for |f | on CR.
If q is fixed and inside Hm, then

∣∣∣∣ f(z)
z − q

∣∣∣∣ < M1

(k2 + kk′ + k′2)n/2
(11.2.27)
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for z on CR, where M1 is some constant that depends on q and n.
Now we estimate the length of CR. We first calculate the arc length of ωR,

then make the change of variable q = exp(πiτ), and lastly estimate CR. From
(11.2.9) and (11.2.10), we see that the length of ωR is less than

1
2
π

(
h

k
− h′

k′

)
=

1
2
π

(
1

kk′

)

by (11.2.7). Because ∣∣∣∣dq

dτ

∣∣∣∣ = |πieπiτ | = |πiq| ≤ π

on this arc, the length of CR is less than

π2

2
1

kk′ . (11.2.28)

Thus, by (11.2.27) and (11.2.28),∣∣∣∣
∫

CR

f(z)
z − q

dz

∣∣∣∣ < M2

kk′(k2 + kk′ + k′2)n/2
, (11.2.29)

where M2 is some constant that depends on q and n. Using the transformation
T2, we can obtain an identical result for the integral over CL.

So far we have examined only the portion of Ωm in the right half-plane
and the portion of Hm in the upper half-plane. Because Ωm is symmetric
about 0, it follows that Hm is symmetric about the real axis. By applying the
reasoning above to the interval [−h/k,−h′/k′], we obtain identical results for
the arcs in the lower half-plane that are mirror images of the arcs CL and CR

in the upper half-plane, which we have just analyzed.
We are ready to estimate the integral over Hm. Using (11.2.29), we obtain

the inequality∣∣∣∣
∫

Hm

f(z)
z − q

∣∣∣∣ < 4M2

∑
(

h′

k′ ,
h
k

)
1

kk′(k2 + kk′ + k′2)n/2
, (11.2.30)

where the summation runs over all adjacent pairs of Farey fractions in Fm,
and M2 is, of course, independent of m. We want to show that the right-hand
side tends to zero as m tends to ∞.

To that end, observe that
∑

(
h′

k′ ,
h
k

)
1

kk′(k2 + kk′ + k′2)n/2
<

∑
(

h′

k′ ,
h
k

)
1

kk′
(

k+k′

2

)n (11.2.31)

<

(
2
m

)n ∑
(

h′

k′ ,
h
k

)

(
h

k
− h′

k′

)
=
(

2
m

)n

.
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Therefore, by (11.2.30) and (11.2.31),

lim
m→∞

1
2πi

∫
Hm

f(z)
z − q

= 0. (11.2.32)

Note that for a typical arc C, the maximum distance from the arc to the
unit circle is less than the length of C. From our calculation of the maximum
possible length of CR in (11.2.28), we see that the length of C is less than

π2

kk′ <
π2

k(m − k)
≤ π2

m − 1

if k < m, and it is less than
π2

kk′ ≤
π2

m

if k = m. So as m tends to ∞, Hm approaches the unit circle uniformly from
the inside. Therefore all the poles of f(z) that are inside the unit circle are
eventually inside Hm. By (11.2.6) and (11.2.32),

f(q) = −
∑

Res, (11.2.33)

where Σ Res is the sum of the residues of f(z)/(z − q) at the poles of f that
are inside the unit circle. We next determine these poles.

Recall that ϕ(τ) has only one pole in P1, a simple pole at τ = α, with
residue A. By the functional equation (11.2.1), the only poles of ϕ(τ) in the
upper half-plane are at the points τ = (aα + b)/(cα + d), where a, b, c, d ∈ Z

and ad − bc = 1.
If c and d are fixed, and (a, b) is one solution to ad− bc = 1, then the com-

plete set of solutions is {(a + mc, b + md) : m ∈ Z}. Each of these solutions
produces a distinct pole of ϕ(τ). However, this set yields only two distinct
poles of f(q), namely,

q = ± exp
(

πi
aα + b

cα + d

)
, (11.2.34)

because

exp
(

πi
(a + mc)α + (b + md)

cα + d

)
= (−1)m exp

(
πi

aα + b

cα + d

)
.

If we let (c, d) range over all pairs of coprime integers, then the two expressions
in (11.2.34) will eventually take on as their values each of the poles of f inside
the unit circle.

However, as we will see later when applying the theorem, it is possible that
different pairs (c, d) may produce the same poles of f(q). In our applications,
we need to be careful when calculating the sum Σ Res so that we do not count
a residue of the same pole twice.
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We now calculate the residues of f(q) at its poles. If we let T :=
(aτ + b)/(cτ + d), then τ = (dT − b)/(−cT + a). When we substitute T
for τ and find a common denominator, we find that

A = Res(ϕ(τ), α) = lim
τ→α

(cτ + d)nϕ

(
aτ + b

cτ + d

)
(τ − α)

= (cα + d)n lim
τ→α

ϕ(T )
(

dT − b

−cT + a
− α

)

= (cα + d)n lim
T→(aα+b)/(cα+d)

ϕ(T )
(

(cα + d)T − (aα + b)
−cT + a

)

= (cα + d)n lim
T→(aα+b)/(cα+d)

ϕ(T )

⎛
⎜⎜⎝

T − aα + b

cα + d

−c

(
aα + b

cα + d

)
+ a

⎞
⎟⎟⎠ (cα + d)

= (cα + d)n+2 lim
T→(aα+b)/(cα+d)

ϕ(T )
(

T − aα + b

cα + d

)
. (11.2.35)

Note that the right-hand side of (11.2.35) is (cα + d)n+2 times the residue of
ϕ(τ) at τ = (aα + b)/(cα + d). Hence,

Res
(

ϕ(τ),
aα + b

cα + d

)
=

A

(cα + d)n+2
. (11.2.36)

Using (11.2.36) and the fact that

dq

dτ

∣∣∣∣
τ=

aα+b
cα+d

= πi exp
(

πi
aα + b

cα + d

)
,

we find that

Res
(

f(q),± exp
(

πi
aα + b

cα + d

))
= ±

πiA exp
(

πi
aα + b

cα + d

)

(cα + d)n+2 = ±
πiAq

(cα + d)n+2 ,

(11.2.37)
where

q = exp
(

πi
aα + b

cα + d

)
.

When we use (11.2.37) to evaluate the sum −
∑

Res in (11.2.33), we find that
(11.2.33) becomes

f(q) = −
∑(

πiAq

(cα + d)n+2

1
q − q

+
−πiAq

(cα + d)n+2

1
−q − q

)

= −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

, (11.2.38)
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where the summation runs over all pairs of coprime integers (c, d) that yield
distinct values for ±q (the poles of f(q)), and for fixed (c, d), (a, b) is any
integral solution to ad − bc = 1. Thus the proof of the theorem is complete
for |q| < 1.

If |q| > 1, the proof is the same except that now there is not a pole of f(q)
inside the unit circle. Thus, the term f(q) in (11.2.2) does not appear, and so
we arrive at (11.2.3) instead. ��

11.3 The Coefficients of 1/Q(q)

As we noted earlier, Hardy and Ramanujan used Theorem 11.2.1 to prove
a formula for the coefficients in the power series expansion of the recipro-
cal of the Eisenstein series E6(τ) = R(q). In this section we prove one of
the analogous results found with the publication of the lost notebook [244,
pp. 102–104], [74, pp. 179–182]. These three pages are apparently taken from
one of Ramanujan’s letters to Hardy in 1918, but the pages are undated and
bear no salutation.

Let K = Q(
√
−3). The algebraic integral domain OK = Z[ζ] = Z ⊕ ζZ,

where ζ = exp(2πi/3), is a principal ideal domain. If (c, d) is a pair of coprime
integers that is a solution to the equation

λ = c2 − cd + d2, (11.3.1)

where λ is a certain fixed positive integer, then

± (c, d), ±(d, c), ±(c − d, c), ±(c, c − d), ±(d, d − c), ±(c − d,−d)
(11.3.2)

are solutions as well. To see this, set α = c + dζ and let A = (c + dζ) be an
ideal. Then, if N denotes the norm of A, we see that

λ = N(A) = AĀ = (c + dζ)(c + dζ̄),

where ζ̄ = ζ2. The unit group in OK is U := {±1,±ζ,±ζ2}. It follows that

A = (α) = (−α) = (αζ) = (−αζ) = (αζ2) = (−αζ2),

Ā = (ᾱ) = (−ᾱ) = (ᾱζ) = (−ᾱζ) = (ᾱζ2) = (−ᾱζ2).

Hence, one solution generates twelve solutions. For example, if

A = (αζ) = (cζ + dζ2) = (cζ + d(−1 − ζ)) = (−d + (c − d)ζ),

then (−d, c − d) is a solution if (c, d) is a solution. Note that if λ is a prime,
then the twelve solutions are the only solutions, but if λ is composite, there
may be many solutions.
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Definition 11.3.1. We say that two solutions (c1, d1) and (c2, d2) to the equa-
tion (11.3.1) are distinct if they do not simultaneously belong to the same set
of solutions in (11.3.2).

Note that each of the solutions in (11.3.2) has an element from two of the
three sets {±c}, {±d}, and {±(c − d)}. Thus if two solutions simultaneously
belong to (11.3.2), then they have an element in common at least in absolute
value. It follows that (c1, d1) and (c2, d2) are distinct solutions to (11.3.1) if
and only if

c2, d2 /∈ {±c1,±d1}. (11.3.3)

It is well known, see, e.g., the text by Niven, Zuckerman, and Montgomery
[223, p. 176], that the integers λ that can be represented in the form of λ =
c2 − cd + d2, with c and d coprime, are integers of the form

λ = 3a
r∏

j=1

p
aj

j , (11.3.4)

where a = 0 or 1, pj is a prime of the form 6m + 1, and aj is a nonnegative
integer, 1 ≤ j ≤ r.

Entry 11.3.1 (p. 103). Recall that Q(q) and R(q) are defined by (11.1.2)
and (11.1.3), respectively. Let

1
Q(q2)

=
∞∑

n=0

βnq2n, |q| < q0,

and

G := R(e2πiρ) = 1 − 504
∞∑

k=1

(−1)kk5

ekπ
√

3 − (−1)k
= 2.8815 . . . , (11.3.5)

where ρ := −1/2 + i
√

3/2. Then

βn = (−1)n 3
G

⎧⎪⎪⎨
⎪⎪⎩

enπ
√

3 − enπ
√

3/3

33 +
2 cos

(
2πn

7
− 6 arctan(−3

√
3)
)

73 enπ
√

3/7

+
2 cos

(
6πn

13
− 6 arctan(−2

√
3)
)

enπ
√

3/13

133 + · · ·

⎫⎪⎪⎬
⎪⎪⎭

= (−1)n 3
G

∑
(λ)

hλ(n)
λ3 enπ

√
3/λ. (11.3.6)

Here λ runs over the integers of the form (11.3.4),
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h1(n) = 1, h3(n) = −1, (11.3.7)

and, for λ ≥ 7,

hλ(n) = 2
∑
(c,d)

cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))
,

(11.3.8)
where the sum is over all pairs (c, d), where (c, d) is a distinct solution to
λ = c2 − cd + d2 and, for fixed (c, d), (a, b) is any solution to ad − bc = 1.
Also, distinct solutions (c, d) to λ = c2 − cd + d2 give rise to distinct terms in
the sum in (11.3.6). Furthermore, if n < 0, the sum on the far right side of
(11.3.6) equals 0.

Proof. We apply Theorem 11.2.1 to the function 1/Q(q2). Then ϕ(τ) =
1/Q(e2πiτ ) = 1/E4(τ). Since the Eisenstein series E2j(τ) is a modular form
of degree −2j [255, p. 50], ϕ(τ) satisfies the functional equation (11.2.1) with
n = 4, i.e.,

ϕ(τ) = ϕ

(
aϕ + b

cτ + d

)
(cτ + d)4. (11.3.9)

The function ϕ(τ) has only one pole in P1, a simple pole at τ = − 1
2 +i

√
3

2 =: ρ
[246, p. 198]. Thus, in (11.2.2), we have

α = ρ. (11.3.10)

Clearly ϕ(τ) is meromorphic in H, which implies that f(q) is meromorphic in
the unit disk.

We now calculate A = Res(ϕ, ρ) by calculating the corresponding residue,
Res(f, eπiρ).

Suppose that a function F (q) has a simple pole at q = q1. Expanding F (q)
into its Laurent series about q = q1, we can easily see that

Res(F, q1) =
1

d(1/F (q))/dq

∣∣∣∣
q=q1

. (11.3.11)

By (11.3.11), (11.1.2), and (11.1.8),

Res(f, eπiρ) =
1

d(Q(q2))/dq

∣∣∣∣
q=eπiρ

=
3
2

q

P (q2)Q(q2) − R(q2)

∣∣∣∣
q=eπiρ

= −3
2

eπiρ

R(e2πiρ)
= −3eπiρ

2G
,

where G is given by (11.3.5).
If we apply (11.2.37) with α = ρ and (a, b, c, d) = (1, 0, 0, 1), then we

deduce that

πiAeπiρ = −3eπiρ

2G
,
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or
A = − 3

2πiG
. (11.3.12)

By (11.2.2), (11.3.9), (11.3.10), and (11.3.12), we find that

f(q) =
3
G

∑
(c,d)

1
(cρ + d)6

1
1 − (q/q)2

, (11.3.13)

where

q = exp
(

πi

(
aρ + b

cρ + d

))
, (11.3.14)

and where the summation runs over all pairs of coprime integers (c, d) that
produce distinct values for the set {q,−q}, and (a, b) is any integral solution
to ad − bc = 1.

By (11.2.34), each pair (c, d) leads to exactly two distinct poles of f in the
unit circle, q and −q, but it is possible that different pairs may lead to the
same poles, so we need to be careful that we do not count the same pole twice
in the summation.

Thus, two tasks remain: find the values of (c, d) over which the summation
runs, and compare the coefficients of qn on both sides of (11.3.13).

First, if λ = c2 − cd + d2, then

aρ + b

cρ + d
=

(aρ + b)(cρ2 + d)
λ

=
ac + bd + (ad − bc)ρ + bc(ρ + ρ2)

λ

=
ac + bd − bc − 1

2 +
√

3
2 i

λ
.

So,

q = exp

(
−π

√
3

2λ

)
exp
(

πi

λ

(
ac + bd − 1

2
ad − 1

2
bc

))
. (11.3.15)

If two pairs (c3, d3) and (c4, d4) produce distinct values of λ, i.e., c2
3 −

c3d3 + d2
3 = λ3 �= λ4 = c2

4 − c4d4 + d2
4, then those pairs lead to distinct values

for the set {±q}, say {±q
3
} and {±q

4
}, i.e.,

{±q
3
} ∩ {±q

4
} = ∅. (11.3.16)

We now consider the case in which different values of (c, d) produce the
same values of λ. As we saw in (11.3.2), each solution (c, d) to λ = c2−cd+d2

generates a total of twelve solutions. If λ = 1 or λ = 3, then only six of
these twelve are different solutions. If λ ≥ 7, then the twelve solutions are all
different.

Suppose that the solution (c, d) leads to {±q
5
}, say. Then (−c,−d) also

leads to {±q
5
}, while (d, c) and (c, c−d) both lead to {±q̄

5
}. Since these three
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basic transformations lead to either {±q
5
} or {±q̄

5
}, it follows that (c, d) and

the eleven corresponding solutions of (11.3.2) yield a set of only four different
poles, namely,

{±q
5
,±q̄

5
}. (11.3.17)

This would be a set of only two poles if q
5

were real or purely imaginary. We
prove in Lemmas 11.3.1, 11.3.2, and 11.3.3 at the end of this section that q
can never be real, and that it is purely imaginary only when λ = 1 or λ = 3.
Thus, (11.3.17) is valid only for λ ≥ 7. If λ = 1 or λ = 3, then the solutions
of (11.3.2) produce a set of only two poles (for each value of λ),

{±q
5
}. (11.3.18)

Lastly, suppose that (c1, d1) and (c2, d2) are distinct solutions to equation
(11.3.1). In Lemma 11.3.4 at the end of the section, we prove that each distinct
solution (together with its eleven corresponding solutions in (11.3.2)) yields
four distinct poles, i.e.,

{±q
1
,±q̄

1
} ∩ {±q

2
,±q̄

2
} = ∅, (11.3.19)

where the bracketed sets correspond to (c1, d1) and (c2, d2), respectively.
We can now express the right-hand side of (11.3.13) not as a sum over

pairs (c, d), but as a sum over λ and over distinct pairs (c, d).
From (11.3.13) and (11.3.16)–(11.3.19),

f(q) =
3
G

⎧⎪⎪⎨
⎪⎪⎩
∑
(λ)
λ≤3

1
(cρ + d)6

1
1 − (q/q)2

(11.3.20)

+
∑
(λ)
λ>3

(
1

(cρ + d)6
1

1 − (q/q)2
+

1
(dρ + c)6

1
1 − (q/q̄)2

)⎫⎪⎪⎬
⎪⎪⎭

,

where λ runs over all integers of the form (11.3.4), and where, for each fixed
λ, the sum is also over all distinct pairs (c, d).

For λ = 1, with (a, b, c, d) = (1, 0, 0, 1), by (11.3.15),

q = exp
(
−π

√
3/2
)

exp(−πi/2) = −ie−π
√

3/2.

Thus,
1

(cρ + d)6
1

1 − (q/q)2
=

1

1 + eπ
√

3q2
. (11.3.21)

Similarly, for λ = 3, with (a, b, c, d) = (1, 1, 1, 2), by (11.3.15),

q = exp

(
−π

√
3

6

)
exp
(

πi

3

(
3
2

))
= i exp

(
−π

√
3

6

)
.
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Thus,
1

(cρ + d)6
1

1 − (q/q)2
= − 1

27
1

1 + eπ
√

3/3q2
. (11.3.22)

By (11.3.21) and (11.3.22), equality (11.3.20) becomes

f(q) =
3
G

{
1

1 + eπ
√

3q2
− 1

27
1

1 + eπ
√

3/3q2

+
∑
(λ)
λ>3

(
1

(cρ + d)6
1

1 − (q/q)2
+

1
(dρ + c)6

1
1 − (q/q̄)2

)⎫⎪⎪⎬
⎪⎪⎭

=
3
G

{ ∞∑
n=0

(−1)nenπ
√

3q2n − 1
27

∞∑
n=0

(−1)nenπ
√

3/3q2n

+
∑
(λ)
λ>3

(
1

(cρ + d)6

∞∑
n=0

q−2nq2n +
1

(dρ + c)6

∞∑
n=0

q̄−2nq2n

)}

=
∞∑

n=0

βnq2n, (11.3.23)

where |q| < e−π
√

3/2 and

βn = (−1)n 3
G

(
enπ

√
3 − enπ

√
3/3

33

)

+
3
G

∑
(λ)
λ>3

(
1

(cρ + d)6
q−2n +

1
(dρ + c)6

q̄−2n

)
. (11.3.24)

We now show that

1
(cρ + d)6

=
(

1
(dρ + c)6

)
, (11.3.25)

and then we use this to express the sum in (11.3.24) more explicitly. By an
elementary calculation, we find that

1
(cρ + d)6

=
1
λ3 exp

(
−6i arctan

(
c
√

3
2d − c

))
, (11.3.26)

and similarly,

1
(dρ + c)6

=
1
λ3 exp

(
−6i arctan

(
d
√

3
2c − d

))
. (11.3.27)
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Note, however, that

tan

(
arctan

(
c
√

3
2d − c

)
+ arctan

(
d
√

3
2c − d

))

=

c
√

3
2d − c

+
d
√

3
2c − d

1 −
(

c
√

3
2d − c

)(
d
√

3
2c − d

) = −
√

3.

Hence,

arctan

(
c
√

3
2d − c

)
+ arctan

(
d
√

3
2c − d

)
= mπ − π

3
, (11.3.28)

where m is some integer. Thus from (11.3.26), (11.3.27), and (11.3.28),

1
(cρ + d)6

1
(dρ + c)6

=
1
λ6 exp

(
−6i

(
mπ − π

3

))
=

1
λ6 , (11.3.29)

which is, of course, real. Since {(cρ+d)6(dρ+ c)6}−1 is real, (11.3.25) follows.
From (11.3.15),

q−2n = (−1)n exp

(
nπ

√
3

λ

)
exp
(

nπi

λ
(ad + bc − 2ac − 2bd + λ)

)
.

(11.3.30)
Thus, by (11.3.29), (11.3.26), and (11.3.30), each summand in the sum of

(11.3.24) is

2Re

(
q−2n

(cρ + d)6

)
= 2(−1)nenπ

√
3/λ

× Re

⎛
⎜⎜⎜⎜⎝

exp
(

nπi

λ
(ad + bc − 2ac − 2bd + λ)

)
exp

(
−6i arctan

(
c
√

3
2d − c

))

λ3

⎞
⎟⎟⎟⎟⎠

=
(−1)n

λ3 2 cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))
enπ

√
3/λ.

(11.3.31)

From (11.3.24) and (11.3.31), the coefficient of q2n in the power series expan-
sion of f(q) is
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βn = (−1)n 3
G

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

enπ
√

3 − enπ
√

3/3

33

+
∑
(λ)
λ>3

2 cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))

λ3 enπ
√

3/λ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= (−1)n 3
G

∑
(λ)

hλ(n)
λ3 enπ

√
3/λ , (11.3.32)

where hλ(n) is defined in (11.3.7) and (11.3.8). This proves (11.3.6).
To obtain the displayed terms in the expansion (11.3.6), we choose

(a, b, c, d) = (1, 0, 3, 1) for λ = 7 and (a, b, c, d) = (1, 0, 4, 1) for λ = 13.
Lastly, we consider the case for n < 0. Up until (11.3.23), we did not use

the fact that |q| < 1, except that if |q| > 1, by Theorem 11.2.1, the left side of
(11.3.23) would equal 0. Instead of expanding the summands on the left side
of (11.3.23) in powers of q, we expand the summands in powers of q−1 when
|q| > 1. We thus find that, for |q| > eπ

√
3/2,

0 =
3
G

{ ∞∑
n=1

(−1)ne−nπ
√

3q−2n − 1
27

∞∑
n=1

(−1)ne−nπ
√

3/3q−2n

+
∑
(λ)
λ>3

(
1

(cρ + d)6

∞∑
n=1

q2nq−2n +
1

(dρ + c)6

∞∑
n=1

q̄2nq−2n

)}

=
∞∑

n=1

β−nq−2n.

This then completes the proof of the entry for n < 0.
Thus the proof of Entry 11.3.1 is complete apart from several technical

lemmas. ��

Lemma 11.3.1. Given a coprime pair of integers (c, d), we can always choose
integers a and b such that ad − bc = 1 and

∣∣ac + bd − 1
2 (ad + bc)

∣∣ ≤ 1
2 (c2 − cd + d2) . (11.3.33)

Proof. Let (a1, b1) be a solution to ad − bc = 1. Then the complete set of
solutions is {(a1 + mc, b1 + md) : m ∈ Z}. Substituting this expression into
the left side of (11.3.33), we see that
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∣∣(a1 + mc)c + (b1 + md)d − 1
2 (a1 + mc)d − 1

2 (b1 + md)c
∣∣

=
∣∣a1c + b1d − 1

2a1d − 1
2b1c + m(c2 − cd + d2)

∣∣ .
For some unique integer m1, we have

a1c + b1d − 1
2a1d − 1

2b1c + m1(c2 − cd + d2) ≤ 0

and

a1c + b1d − 1
2a1d − 1

2b1c + (m1 + 1)(c2 − cd + d2) ≥ 0,

since c2 − cd + d2 > 0. Thus one of the two pairs

a = a1+m1c, b = b1+m1d and a = a1+(m1+1)c, b = b1+(m1+1)d

is our desired solution. ��

Lemma 11.3.2. If ad − bc = 1, where a, b, c, d ∈ Z, then the quantity

q = exp

(
−π

√
3

2(c2 − cd + d2)

)
exp
(

πi

(
ac + bd − 1

2 (ad + bc)
c2 − cd + d2

))
(11.3.34)

cannot be real.

Proof. By (11.2.34), if c and d are fixed and (a, b) is a solution to ad− bc = 1
that leads to q, then other solutions to ad− bc = 1 will lead to either q or −q.
Therefore if q is real for some solution (a, b), then it is real for all solutions.

Suppose that a certain pair (c, d) leads to a value of q that is real. We can
assume without loss of generality that (a, b) satisfies (11.3.33). Since q is real,
we have, by (11.3.34),

ac + bd − 1
2 (ad + bc) ≡ 0 (mod (c2 − cd + d2)),

and so, by (11.3.33), ac + bd − 1
2 (ad + bc) = 0. Adding the equations 0 =

(ac + bd − 1
2 (ad + bc))2 and 1 = (ad − bc)2 gives

1 = a2c2 + a2d2 + b2c2 + b2d2 − a2cd − abc2 − abd2 − b2cd

+ 1
4 (a2d2 + 2abcd + b2c2)

= (c2 − cd + d2)(a2 − ab + b2) + 1
4 (ad − bc)2

= (c2 − cd + d2)(a2 − ab + b2) + 1
4 .

Hence,
3
4 = (c2 − cd + d2)(a2 − ab + b2),

which is impossible since the variables are integers. Thus q cannot be real. ��
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Lemma 11.3.3. Under the conditions of Lemma 11.3.2, the quantity q is
purely imaginary only when λ = 1 or λ = 3, where λ = c2 − cd + d2.

Proof. Suppose that a certain pair (c, d) leads to a value of q that is purely
imaginary. We can assume without loss of generality that (a, b) satisfies
(11.3.33). Since q is purely imaginary, we have, by (11.3.34),

2
∣∣ac + bd − 1

2 (ad + bc)
∣∣ = c2 − cd + d2. (11.3.35)

Thus, by (11.3.35) and the equality ad − bc = 1,
(∣∣ac + bd − 1

2 (ad + bc)
∣∣− (a2 − ab + b2)

)2
=
(
ac + bd − 1

2 (ad + bc)
)2 − 2

∣∣ac + bd − 1
2 (ad + bc)

∣∣ (a2 − ab + b2)

+ (a2 − ab + b2)2

=
(
ac + bd − 1

2 (ad + bc)
)2 − (c2 − cd + d2)(a2 − ab + b2) + (a2 − ab + b2)2

= (a2 − ab + b2)2 − 3
4 (ad − bc)2

= (a2 − ab + b2)2 − 3
4

= Λ2 − 3
4 , (11.3.36)

where
Λ := a2 − ab + b2.

Since Λ ∈ Z,
|ac + bd − 1

2 (ad + bc)| = 1
2W , (11.3.37)

where W is odd and positive. Therefore, by (11.3.36) and (11.3.37),
(

1
2W − Λ

)2 = Λ2 − 3
4 ,

or
W
(

1
4W − Λ

)
= − 3

4 .

Hence, the quantity 1
4W −Λ is negative. Clearly, its absolute value is at least

1
4 . Since

3
4 = |W

(
1
4W − Λ

)
| ≥ |14W |,

we deduce that W = 1 or W = 3. But by (11.3.37) and (11.3.35),

W = 2|ac + bd − 1
2 (ad + bc)| = c2 − cd + d2 = λ.

We conclude that if q is purely imaginary, then λ can be only 1 or 3. When
λ = 1 and (c, d) = (1, 0), say, we have, from (11.3.34),

q = ±e−π
√

3/2eπi/2 = ±ie−π
√

3/2.

When λ = 3 and (c, d) = (2, 1), say, we have

q = ±e−π/(2
√

3)e−πi/2 = ∓ie−π/(2
√

3).

So if λ = 1 or λ = 3, the quantity q is indeed purely imaginary. ��
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In Lemma 11.3.4 we establish (11.3.19) by proving the contrapositive
statement, namely, that if two different solutions (c, d) to the equation
λ = c2 − cd + d2 lead to the same set of poles, then the solutions are not
distinct.

Lemma 11.3.4. If (c6, d6) and (c7, d7) are two pairs of coprime integers such
that

c2
6 − c6d6 + d2

6 = c2
7 − c7d7 + d2

7 = λ, (11.3.38)

and if
{±q

6
,±q̄

6
} = {±q

7
,±q̄

7
}, (11.3.39)

where q is defined in (11.3.15), then the two solutions of (11.3.38) are not
distinct. In other words,

{c7, d7} ∩ {±c6,±d6} �= ∅. (11.3.40)

Proof. From (11.2.34), we see that for fixed (cj , dj), the set {±q
j
,±q̄

j
} is

not affected by our choice of (aj , bj). Thus we can assume without loss of
generality that (aj , bj) satisfies (11.3.33) for j = 6 and 7. In other words, if
we define ej by

ej = ajcj + bjdj − 1
2ajdj − 1

2bjcj , (11.3.41)

then we can assume that

|ej | ≤ 1
2λ, j = 6, 7. (11.3.42)

We show that (11.3.39) implies that e6 = ±e7 by considering four different
cases.

If q
6

= q
7
, then by (11.3.15) and (11.3.41), πie6/λ = πie7/λ+2πim, where

m is some integer. In other words,

e6 ≡ e7 (mod 2λ). (11.3.43)

If, however, q
6

= q̄
7
, then, by (11.3.15) and (11.3.41), πie6/λ = −πie7/λ+

2πim1, where m1 is some integer. Thus,

e6 ≡ −e7 (mod 2λ). (11.3.44)

If q
6

= −q
7
, then, by (11.3.15) and (11.3.41), πie6/λ = πie7/λ + πi +

2πim2 , where m2 is some integer, or in other words,

e6 ≡ e7 + λ (mod 2λ) . (11.3.45)

Similarly, if q
6

= −q̄
7
, then πie6/λ = −πie7/λ + πi + 2πim3 , where m3 is

some integer, which implies that

e6 ≡ −e7 + λ (mod 2λ). (11.3.46)
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From (11.3.43)–(11.3.46), we see that the set equality {±q
6
,±q̄

6
} =

{±q
7
,±q̄

7
} implies that e6 ≡ ±e7 (mod λ), which implies that, by (11.3.42),

e6 = ±e7. (11.3.47)

Observe that, by (11.2.4) and (11.3.41),

e2
j + 1 = e2

j + (ajdj − bjcj)2 = (c2
j − cjdj + d2

j )(a
2
j − ajbj + b2

j ) + 1
4 .

Therefore since e2
6 = e2

7 and c2
6 − c6d6 + d2

6 = c2
7 − c7d7 + d2

7, we deduce that

a2
6 − a6b6 + b2

6 = a2
7 − a7b7 + b2

7. (11.3.48)

Later we use this observation.
We now prove (11.3.40) using matrices. We consider two cases.

Case 1. Assume that e6 = e7. If we let, for j = 1, 2,

Mj :=

⎡
⎢⎣

cj − 1
2dj

√
3

2 dj

aj − 1
2bj

√
3

2 bj

⎤
⎥⎦ , (11.3.49)

then

MjM
T
j =

⎡
⎣ c2

j − cjdj + d2
j ajcj + bjdj − 1

2ajdj − 1
2bjcj

ajcj + bjdj − 1
2ajdj − 1

2bjcj a2
j − ajbj + b2

j

⎤
⎦ .

(11.3.50)
Observe that

M6M
T
6 = M7M

T
7 , (11.3.51)

by (11.3.38), (11.3.41), (11.3.48), and the assumption that e6 = e7. After mul-
tiplying both sides of (11.3.51) by M−1

7 on the left side and then by (MT
6 )−1

on the right side, we obtain

U := M−1
7 M6 = MT

7 (MT
6 )−1 = (M−1

6 M7)T = (U−1)T . (11.3.52)

We want to determine the entries of U , because these may give us infor-
mation about the entries of the matrices M6 and M7. We start by calculating
the values of the determinants |Mj | and |U |. From the definition of Mj in
(11.3.49), a straightforward calculation gives

|Mj | = −
√

3
2

, (11.3.53)

by (11.2.4). Thus, by (11.3.52) and (11.3.53),

|U | =
(
− 2√

3

)(
−
√

3
2

)
= 1. (11.3.54)
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If

U =
[
w x
y z

]
, (11.3.55)

then, by (11.3.54) and (11.3.52), we find that
[
w x
y z

]
=
[

z −y
−x w

]
.

Thus, U is of the form

U =
[

w x
−x w

]
. (11.3.56)

By (11.3.52), (11.3.53), and a straightforward calculation (in the notation
(11.3.55)),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w = −b7(c6 − 1
2d6) + d7(a6 − 1

2b6),
x = −

√
3

2 b7d6 +
√

3
2 b6d7,

y = 2√
3
(a7 − 1

2b7)(c6 − 1
2d6) − 2√

3
(a6 − 1

2b6)(c7 − 1
2d7),

z = d6(a7 − 1
2b7) − b6(c7 − 1

2d7).

(11.3.57)

Thus, we see that U has the form

U =

⎡
⎣

1
2 P

√
3

2 Q

1
2
√

3
R 1

2 S

⎤
⎦ , (11.3.58)

where P , Q, R, S ∈ Z. By (11.3.56) and (11.3.58), we conclude that U is of
the form

U =

⎡
⎢⎣

1
2 P

√
3

2 Q

−
√

3
2 Q 1

2 P

⎤
⎥⎦ , (11.3.59)

where P , Q ∈ Z.
By (11.3.54) and (11.3.59), we deduce that

1
4

P 2 +
3
4

Q2 = 1,

so either P , Q ∈ {±1} or P = ±2 and Q = 0.
If P = ±2 and Q = 0, then

U = ±
[
1 0
0 1

]
. (11.3.60)

But by (11.3.52), we deduce that

M6 = ±M7 , (11.3.61)
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which implies that d6 = ±d7. Thus, the statement we wanted to prove,
(11.3.40), holds.

If, however, P , Q ∈ {±1}, then U is of the form

U =

⎡
⎢⎣
±1

2

√
3

2

−
√

3
2 ± 1

2

⎤
⎥⎦ or U =

⎡
⎢⎣
±1

2 −
√

3
2

√
3

2 ± 1
2

⎤
⎥⎦ . (11.3.62)

We consider two subcases.

Case 1A. Assume the first case in (11.3.62). By the definition of U in
(11.3.52),

⎡
⎢⎣

c6 − 1
2d6

√
3

2 d6

a6 − 1
2b6

√
3

2 b6

⎤
⎥⎦ =

⎡
⎢⎣

c7 − 1
2d7

√
3

2 d7

a7 − 1
2b7

√
3

2 b7

⎤
⎥⎦
⎡
⎢⎣
±1

2

√
3

2

−
√

3
2 ± 1

2

⎤
⎥⎦ . (11.3.63)

The entry in the first row and second column of the matrix on the left-hand
side of the equation is
√

3
2

d6 =
√

3
2

(
c7 −

1
2
d7

)
±

√
3

4
d7 =

√
3

2
c7 +

(
−
√

3
4

±
√

3
4

)
d7 . (11.3.64)

If we choose the plus sign in the first matrix of (11.3.62) (and hence in
(11.3.64)), then we conclude that d6 = c7, from which (11.3.40) follows. If,
however, we choose the minus sign in (11.3.62), then we conclude that d6 =
c7 − d7. We show that this implies that c6 = c7 or c6 = −d7, from which
(11.3.40) follows.

The pairs (c6, d6) and (c7, d7) are solutions to the equation λ = c2−cd+d2.
Note that if λ and d6 are fixed, then there are at most two solutions c6 to
the equation. If we set d6 = c7 − d7, then it follows from (11.3.2) that two
solutions for c6 (indeed, the only two possible solutions for c6) are c6 = c7

and c6 = −d7. It follows that (11.3.40) holds, and the proof for Case 1A is
complete.

Case 1B. The proof for Case 1B is very similar to that for Case 1A. Assume
that the second case in (11.3.62) holds. Note that

U =

⎡
⎢⎣
±1

2 −
√

3
2

√
3

2 ± 1
2

⎤
⎥⎦ = −

⎡
⎢⎣
∓ 1

2

√
3

2

−
√

3
2 ∓ 1

2

⎤
⎥⎦ ,

which is the matrix in Case 1A multiplied by the scalar −1. Thus, by (11.3.63),
or (11.3.64),

√
3

2
d6 = −

(√
3

2
c7 +

(
−
√

3
4

±
√

3
4

)
d7

)
, (11.3.65)
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which implies that d6 = −c7 or d6 = −c7 + d7. But note that d6 = d7 − c7

would imply that c6 = −c7 or c6 = d7 by (11.3.2). Hence, (11.3.40) follows,
and the proof for Case 1B is complete.

Case 2. The proof of Case 2 is very similar to that of Case 1. Assume that

e6 = −e7. (11.3.66)

If we let

M̃7 =

⎡
⎢⎣

c7 − 1
2d7 −

√
3

2 d7

−
(
a7 − 1

2b7

) √
3

2 b7

⎤
⎥⎦ , (11.3.67)

then a brief calculation gives

M̃7M̃
T
7 =

⎡
⎣ c2

7 − c7d7 + d2
7 −a7c7 − b7d7 + 1

2a7d7 + 1
2b7c7

−a7c7 − b7d7 + 1
2a7d7 + 1

2b7c7 a2
7 − a7b7 + b2

7

⎤
⎦ .

Note that the definition of M̃7 is the same as that of M7 in (11.3.49), except
that the entries along one diagonal are multiplied by −1. A straightforward
calculation gives

|M̃7| = −
√

3
2

. (11.3.68)

By (11.3.50), (11.3.38), (11.3.48), and (11.3.66), M6M
T
6 = M̃7M̃

T
7 , or

Ũ := M̃−1
7 M6 = (M−1

6 M̃7)T . (11.3.69)

Then, from the definitions of M6 in (11.3.49) and M̃7 in (11.3.67) and the
value of |M̃7| from (11.3.68) we find that, after multiplying the requisite ma-
trices, if

Ũ :=
[
a b
c d

]
,

then ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = −b7(c6 − 1
2d6) − d7(a6 − 1

2b6),
b = −

√
3

2 b7d6 −
√

3
2 b6d7,

c = − 2√
3
(a7 − 1

2b7)(c6 − 1
2d6) − 2√

3
(a6 − 1

2b6)(c7 − 1
2d7),

d = −d6(a7 − 1
2b7) − b6(c7 − 1

2d7).

Thus, Ũ has the shape

Ũ =

⎡
⎢⎣

1
2 P̃

√
3

2 Q̃

1
2
√

3
R̃ 1

2 S̃

⎤
⎥⎦ , (11.3.70)

where P̃ , Q̃, R̃, S̃ ∈ Z.
As in Case 1, where (11.3.51) implies (11.3.52) and thus (11.3.53), the

condition (11.3.69) implies that Ũ = (Ũ−1)T , so that Ũ is of the form
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Ũ =
[

w̃ x̃
−x̃ w̃

]
. (11.3.71)

By (11.3.70) and (11.3.71), we see that Ũ is of the form

Ũ =

⎡
⎢⎣

1
2 P̃

√
3

2 Q̃

−
√

3
2 Q̃ 1

2 P̃

⎤
⎥⎦ , (11.3.72)

where P̃ , Q̃ ∈ Z. But note that, by (11.3.68) and (11.3.53),

|Ũ | = |M̃−1
7 ||M6| =

(
− 2√

3

)(
−
√

3
2

)
= 1,

which implies that
1
4
P̃ 2 +

3
4
Q̃2 = 1.

If P̃ = ±2 and Q̃ = 0, then, by (11.3.60) and (11.3.61), d6 = ±d7. If,
however, P̃ , Q̃ ∈ {±1}, then Ũ has the form

Ũ =

⎡
⎢⎣
±1

2

√
3

2

−
√

3
2 ± 1

2

⎤
⎥⎦ or Ũ =

⎡
⎢⎣
±1

2 −
√

3
2

√
3

2 ± 1
2

⎤
⎥⎦ . (11.3.73)

If the first case of (11.3.73) holds, then, by (11.3.69),⎡
⎢⎣

c6 − 1
2d6

√
3

2 d6

a6 − 1
2b6

√
3

2 b6

⎤
⎥⎦ =

⎡
⎢⎣

c7 − 1
2d7 −

√
3

2 d7

−
(
a7 − 1

2b7

) √
3

2 b7

⎤
⎥⎦
⎡
⎢⎣
±1

2

√
3

2

−
√

3
2 ± 1

2

⎤
⎥⎦ . (11.3.74)

The entry in the first row and second column of the matrix on the left-hand
side of the equation is

√
3

2
d6 =

√
3

2

(
c7 −

1
2
d7

)
∓

√
3

4
d7 =

√
3

2
c7 +

(
−
√

3
4

∓
√

3
4

)
d7, (11.3.75)

which implies (11.3.40), because (11.3.75) is identical to equation (11.3.64),
which ultimately implied (11.3.40).

If, however, the second option in (11.3.73) holds, then by a similar argu-
ment,
√

3
2

d6 = −
√

3
2

(
c7 −

1
2
d7

)
∓

√
3

4
d7 = −

√
3

2
c7 +

(√
3

4
∓

√
3

4

)
d7, (11.3.76)

which implies (11.3.40), because (11.3.76) is identical to equation (11.3.65),
which ultimately implied (11.3.40).

Thus, (11.3.40) holds in both Case 1 and Case 2, and the lemma is proved.
��
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11.4 The Coefficients of Q(q)/R(q)

In a letter to Hardy written from Matlock House, an English sanitarium,
Ramanujan [244, p. 117] communicated a result that is very similar to formula
(11.3.6) in Entry 11.3.1. We prove the result in this section.

Suppose that (c, d) is a pair of coprime integers that is a solution to the
equation

μ = c2 + d2, (11.4.1)

where μ is fixed. Let K = Q(
√
−1). Then O = Z[

√
−1] = Z⊕Zi is a principal

ideal domain. Thus, from (11.4.1), λ = N(A) = AĀ, where A = (c+di) =: (α)
and Ā = (ᾱ). The group of units in OK is then given by U = {±1,±i}. Thus,

A = (α) = (−α) = (iα) = (−iα),
Ā = (ᾱ) = (−ᾱ) = (iᾱ) = (−iᾱ).

Hence one solution generates a total of eight solutions, namely,

± (c, d), ±(c,−d), ±(d, c), ±(d,−c). (11.4.2)

Definition 11.4.1. We say that two solutions (c1, d1) and (c2, d2) to the equa-
tion (11.4.1) are distinct if they do not simultaneously belong to the same set
of solutions in (11.4.2).

Note that (c1, d1) and (c2, d2) are distinct solutions to (11.4.1) if and only
if

c2 /∈ {±c1,±d1}. (11.4.3)

Recall that [223, p. 164] the integers μ that can be represented in the form
μ = c2 + d2, with c and d coprime, are integers of the form

μ = 2a
r∏

j=1

p
aj

j , (11.4.4)

where a = 0 or 1, pj is a prime of the form 4m + 1, and aj is a nonnegative
integer, 1 ≤ j ≤ r.

Entry 11.4.1 (p. 117). Let

Q(q2)
R(q2)

=
∞∑

n=0

δnq2n, |q| < q0, (11.4.5)

and

J = Q(e−2π) = 1 + 240
∞∑

k=1

k3

e2πk − 1
= 1.45576 . . . . (11.4.6)

Then, if n ≥ 0,
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δn =
2
J

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

22 enπ +
2 cos

(
4πn

5
+ 4 arctan 2

)

52 e2nπ/5

+
2 cos

(
3πn

5
+ 4 arctan 3

)

102 e2nπ/10 + · · ·

⎫⎪⎪⎬
⎪⎪⎭

:=
2
J

∑
(μ)

vμ(n)
μ2 e2nπ/μ. (11.4.7)

Here, μ runs over the integers of the form (11.4.4),

v1(n) = 1, v2(n) = (−1)n+1, (11.4.8)

and, for μ ≥ 5,

vμ(n) = 2
∑
c,d

cos
(

(ac + bd)
2nπ

μ
+ 4arctan

c

d

)
, (11.4.9)

where the sum is over all pairs (c, d), where (c, d) is a distinct solution to
μ = c2 + d2 and (a, b) is any solution to ad − bc = 1. Also, distinct solutions
(c, d) to μ = c2+d2 give rise to distinct terms in the sum in (11.4.7). If n < 0,
then the sum on the far right side of (11.4.7) equals 0.

Proof. Let |q| < 1. We apply Theorem 11.2.1 to the function f(q)
= Q(q2)/R(q2). Then ϕ(τ) = E4(τ)/E6(τ). Since E4(τ) and E6(τ) are mod-
ular forms of degrees −4 and −6, respectively, ϕ(τ) satisfies the functional
equation (11.2.1) with n = 2. The only zero of E6(τ) in P1 is at

τ = i (11.4.10)

(Rankin [246, p. 198]), while by (11.3.10), E4(τ) does not have a zero at τ = i.
Thus, in the notation of Theorem 11.2.1,

α = i. (11.4.11)

Lastly, because 1/E6(τ) is meromorphic in the upper half-plane [255,
p. 50], we see that ϕ(τ) is also meromorphic there and that f(q) is mero-
morphic inside the unit circle.

We now calculate A = Res(ϕ, i). By (11.1.9), (11.3.11), and (11.4.6),

Res(f, e−π) =
Q(q2)

dR(q2)/dq

∣∣∣∣
q=e−π

=
−qQ(q2)

Q2(q2) − P (q2)R(q2)

∣∣∣∣
q=e−π

=
−qQ(q2)
Q2(q2)

∣∣∣∣
q=e−π

=
−e−π

J
. (11.4.12)



11.4 The Coefficients of Q(q)/R(q) 275

Thus, by (11.4.12) and (11.2.37),

A = Res(ϕ, i) =
Res(f, e−π)

πie−π
=

−1
Jπi

. (11.4.13)

By (11.2.2), (11.4.11), and (11.4.13), we deduce that

f(q) =
2
J

∑
(c,d)

1
(ci + d)4

1
1 − (q/q)2

, (11.4.14)

where

q = exp
(

πi

(
ai + b

ci + d

))
, (11.4.15)

and the conditions on a, b, c, and d are the same as in (11.3.13) and (11.3.14).
We need to explicitly determine the values over which (c, d) runs.

The analysis used to determine which pairs (c, d) are counted in the sum-
mation is very similar to that in Entry 11.3.1. Now,

q = exp
(

πi

(
(ac + bd) + i

c2 + d2

))
= exp

(
−π

μ

)
exp
(

πi

μ
(ac + bd)

)
, (11.4.16)

where μ = c2 + d2. As in (11.3.16), we can show that if the two pairs (c1, d1)
and (c2, d2) produce distinct values of μ, then they lead to distinct values for
the set {±q}, i.e.,

{±q
1
} ∩ {±q

2
} = ∅. (11.4.17)

When μ = 1 or μ = 2, then only four of the eight pairs in (11.4.2) are
distinct in this case. Each value of μ corresponds to only two values of q, say,
{±q

3
}. When μ ≥ 5, all eight pairs in (11.4.2) are distinct. However, if (c, d)

leads to {±q
4
}, say, then (−c, d) and (d, c) each lead to {±q̄

4
}. It follows that

the eight pairs of solutions in (11.4.2) lead to only four different poles, namely,

{±q4,±q̄
4
} . (11.4.18)

These four poles are indeed distinct, because as we show in Lemmas 11.4.1–
11.4.3 at the end of the section, q is real only for μ = 1, and q is purely
imaginary only for μ = 2.

Lastly, in Lemma 11.4.4, we prove that if μ ≥ 5 and (c1, d1) and (c2, d2),
say, are distinct solutions to equation (11.4.1), then each solution, taken to-
gether with the seven corresponding solutions in (11.4.2), yields four distinct
poles, i.e.,

{±q
1
,±q̄

1
} ∩ {±q

2
,±q̄

2
} = ∅ . (11.4.19)

In summary, we have so far shown, by (11.4.14) and (11.4.17)–(11.4.19),
that

f(q) =
2
J

{∑
(μ)
μ≤2

1
(ci + d)4

1
1 − (q/q)2

(11.4.20)
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+
∑
(μ)
μ>2

(
1

(ci + d)4
1

1 − (q/q)2
+

1
(−ci + d)4

1
1 − (q/q̄)2

)}
,

where μ runs over all integers of the form (11.4.4), and where, for each fixed
μ, the sum is also over all distinct pairs (c, d) satisfying (11.4.1).

For μ = 1 and, say, (a, b, c, d) = (1, 0, 0, 1), we find that, by (11.4.16),
q = e−π, so that the summand in (11.4.20) is

1
1 − q2e2π . (11.4.21)

For μ = 2 and, say, (a, b, c, d) = (1, 0, 1, 1), we find that q = ie−π/2, so
that the summand in (11.4.20) is

− 1
22

1
1 + q2eπ . (11.4.22)

Thus, by (11.4.21) and (11.4.22), we can rewrite (11.4.20) as

f(q) =
2
J

{
1

1 − q2e2π
− 1

22

1
1 + q2eπ

+
∑
(μ)
μ>2

(
1

(ci + d)4
1

1 − (q/q)2
+

1
(−ci + d)4

1
1 − (q/q̄)2

)}

=
2
J

{ ∞∑
n=0

e2nπq2n − 1
22

∞∑
n=0

(−1)nenπq2n

+
∑
(μ)
μ>2

(
1

(ci + d)4

∞∑
n=0

q−2nq2n +
1

(−ci + d)4

∞∑
n=0

q̄−2nq2n

)}

=
∞∑

n=0

δnq2n , (11.4.23)

where |q| < e−π and

δn =
2
J

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

22 enπ +
∑
(μ)
μ>2

(
1

(ci + d)4
q−2n +

1
(−ci + d)4

q̄−2n

)
⎫⎪⎪⎬
⎪⎪⎭

=
2
J

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

22
enπ +

∑
(μ)
μ>2

2 cos
(

(ac + bd)
2nπ

μ
+ 4arctan

c

d

)

μ2
e2nπ/μ

⎫⎪⎪⎬
⎪⎪⎭
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=
2
J

∑
(μ)

vμ(n)e2nπ/μ

μ2
, (11.4.24)

where vμ(n) is defined in (11.4.8) and (11.4.9). To obtain the displayed terms
in (11.4.7), we choose (a, b, c, d) = (1, 0, 2, 1) for μ = 5 and (a, b, c, d) =
(1, 0, 3, 1) for μ = 10.

Thus, apart from the lemmas below, the proof of Entry 11.4.1 is complete
for n ≥ 0. For n < 0, we repeat the argument above but with |q| > 1. Then,
by Theorem 11.2.1, the left side of (11.4.23) equals 0 instead of f(q). We
now expand the series on the left side of (11.4.23) in powers of 1/q instead of
powers of q. We complete the argument as in the proof of Entry 11.3.1. ��

The following four lemmas are analogous to Lemmas 11.3.1–11.3.4, and
their proofs are very similar. Lemmas 11.4.1–11.4.3 show that the poles of
(11.4.18) are distinct. Lemma 11.4.4 is used in the proof of (11.4.19).

Lemma 11.4.1. Given a pair of coprime integers (c, d), we can always choose
integers a and b such that ad − bc = 1 and

|ac + bd| ≤ 1
2 (c2 + d2). (11.4.25)

Proof. The proof is virtually identical to that of Lemma 11.3.1. ��

Lemma 11.4.2. If ad − bc = 1, where a, b, c, d ∈ Z, then the quantity

q = exp
(

−π

c2 + d2

)
exp
(

πi

c2 + d2 (ac + bd)
)

(11.4.26)

is real only when c2 + d2 = 1.

Proof. Suppose that a certain pair (c, d) leads to a value of q that is real. As
in the proof of Lemma 11.3.2, we can assume without loss of generality that
(a, b) satisfies (11.4.25).

Since q is real, we see that, by (11.4.26) and (11.4.25), ac+bd = 0. Adding
the equations 0 = (ac + bd)2 and 1 = (ad − bc)2 gives

1 = (ac)2 + (bd)2 + (ad)2 + (bc)2 = (a2 + b2)(c2 + d2), (11.4.27)

which implies that c2 + d2 = 1. ��

Lemma 11.4.3. The quantity q is imaginary only when c2 + d2 = 2.

Proof. Suppose that a certain pair (c, d) leads to a value of q that is imaginary.
We can assume without loss of generality that (a, b) satisfies (11.4.25).

Since q is purely imaginary, we find that, by (11.4.26) and (11.4.25),

2|ac + bd| = c2 + d2, (11.4.28)
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and so
(
|ac + bd| − (a2 + b2)

)2
= (ac + bd)2 − (c2 + d2)(a2 + b2) + (a2 + b2)2

= −a2d2 − b2c2 + 2abcd + (a2 + b2)2

= −(ad − bc)2 + (a2 + b2)2

= −1 + (a2 + b2)2.

The only squares that differ by 1 are 0 and 1. Thus, |ac+bd|−(a2+b2) = 0 and
a2 + b2 = 1, so that |ac + bd| = 1. By (11.4.28), this implies that c2 + d2 = 2.

��

In Lemma 11.4.4 we establish (11.4.19) by proving that if two different
solutions (c, d) to the equation μ = c2 + d2 lead to the same set of poles, then
the solutions are not distinct.

Lemma 11.4.4. If (c1, d1) and (c2, d2), say, are two pairs of coprime integers
such that

c2
1 + d2

1 = c2
2 + d2

2 = μ, (11.4.29)

and if
{±q

1
,±q̄

1
} = {±q

2
,±q̄

2
}, (11.4.30)

where q is defined in (11.4.16), then the two solutions of (11.4.29) are not
distinct. In other words,

c2 ∈ {±c1,±d1}. (11.4.31)

Proof. As in the proof of Lemma 11.3.4, we can assume that (a1, b1) and
(a2, b2) satisfy (11.4.25), so that

− 1
2μ ≤ gj := ajcj + bjdj ≤ 1

2μ, j = 1, 2. (11.4.32)

As in Lemma 11.3.4, (11.4.30) and (11.4.32) imply that

g1 = ±g2. (11.4.33)

Since ad − bc = 1, by (11.4.32), we find that, for j = 1, 2,

g2
j + 1 = g2

j + (ajdj − bjcj)2 = (a2
j + b2

j )(c
2
j + d2

j ), (11.4.34)

so that by (11.4.33) and (11.4.29), we deduce that

a2
1 + b2

1 = a2
2 + b2

2. (11.4.35)

We now prove (11.4.31) by considering two cases.

Case 1. g1 = g2. If we let

Lj =
[
aj bj

cj dj

]
,
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then a simple calculation shows that

L1L
T
1 = L2L

T
2 ,

by (11.4.29), (11.4.35), and the assumption that g1 = g2. This implies that

V := L−1
2 L1 = LT

2 (LT
1 )−1 = (V −1)T . (11.4.36)

Therefore, as in (11.3.56),

V =
[

w x
−x w

]
, (11.4.37)

for some integers w, x. Since ad − bc = 1, we know that |Lj | = 1, and so, by
(11.4.36),

|V | = 1. (11.4.38)

Clearly, V has integral entries, so that (11.4.37) and (11.4.38) imply that

V =
[
±1 0
0 ±1

]
or V =

[
0 ±1
∓1 0

]
. (11.4.39)

By (11.4.36) and (11.4.39),
[
a1 b1

c1 d1

]
=
[
±a2 ±b2

±c2 ±d2

]
or

[
a1 b1

c1 d1

]
=
[
∓b2 ±a2

∓d2 ±c2

]
,

either of which implies (11.4.31).

Case 2. g1 = −g2. This case is very similar to that above. We define

L̃2 =
[

a2 −b2

−c2 d2

]
.

Then, by a brief calculation,

L1L
T
1 = L̃2L̃

T
2 .

If we define Ṽ by
Ṽ = L̃−1

2 L1, (11.4.40)

then, as in Case 1,

Ṽ =
[
±1 0
0 ±1

]
or Ṽ =

[
0 ±1
∓1 0

]
. (11.4.41)

Because L1 = L̃2Ṽ , (11.4.41) implies (11.4.31).
Thus, (11.4.31) holds in Case 1 and Case 2, and the lemma is proved. ��
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11.5 The Coefficients of (πP (q)/3)/R(q) and
(πP (q)/3)2/R(q)

The following theorem is from the fragment published with the “lost note-
book” [244, pp. 102–104] and is similar to the previous theorems. However,
since this result involves a function that is not a modular form, we need to
modify Theorem 11.2.1 in order to prove the result.

Entry 11.5.1 (p. 102). Let

π

3
P (q2)

R(q2)
=

∞∑
n=0

η1,nq2n, |q| < q0, (11.5.1)

and (π

3
P (q2)

)2

R(q2)
=

∞∑
n=0

η2,nq2n, |q| < q0. (11.5.2)

If

C := 1 + 480
∞∑

k=1

k7

e2πk − 1
, (11.5.3)

then, if n ≥ 0,

η1,n =
2
C

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

23
enπ +

2 cos
(

4πn

5
+ 8 arctan 2

)

53
e2nπ/5

+
2 cos

(
3πn

5
+ 8 arctan 3

)

103
e2nπ/10 + · · ·

⎫⎪⎪⎬
⎪⎪⎭

=:
2
C

∑
(μ)

Wμ(n)
μ3 e2nπ/μ (11.5.4)

and

η2,n =
2
C

∑
(μ)

Wμ(n)
μ2 e2nπ/μ , (11.5.5)

where μ runs over the integers of the form (11.4.4). Here,

W1(n) = 1, W2(n) = −(−1)n, (11.5.6)

and, for μ ≥ 5,
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Wμ(n) = 2
∑
c,d

cos
(

(ac + bd)
2nπ

μ
+ 8arctan

c

d

)
, (11.5.7)

where the sum is over all pairs (c, d), where (c, d) is a distinct solution of
μ = c2 + d2. Also, distinct solutions (c, d) to μ = c2 + d2 give rise to distinct
terms in the sums in (11.5.4) and (11.5.5). If n < 0, then the sums on the
right sides of (11.5.4) and (11.5.5) are both equal to 0.

Note that the definition of Wμ(n) is almost identical to that of vμ(n)
in Entry 11.4.1. Recall that the definition of distinct solutions is given in
Definition 11.4.1 and that a and b are any integral solutions of ad − bc = 1.

Proof. For j = 1 or 2, let fj(q) denote the quotients on the left sides of
(11.5.1) and (11.5.2), respectively. Define ϕj(τ) = fj(eπiτ ). Then, by (11.1.5)
and (11.1.4),

ϕ1(τ) =
πE∗

2 (τ)/3
E6(τ)

and ϕ2(τ) =
(πE∗

2 (τ)/3)2

E6(τ)
. (11.5.8)

Recall that E2(τ), defined by (11.1.6), satisfies the functional equation

E2 (V τ) = E2(τ)(cτ + d)2 (11.5.9)

for any modular transformation V τ = (aτ + b)/(cτ + d) . Although E∗
2 (τ) is

not a modular form, we see from Ramanujan’s work [53, p. 320] that it does
satisfy a modified functional equation:

E∗
2 (V τ) = E∗

2 (τ)(cτ + d)2 − 6ci

π
(cτ + d). (11.5.10)

Since E6 is a modular form of weight 6,

E6 (V τ) = E6(τ)(cτ + d)6 . (11.5.11)

Taking (11.5.10) and (11.5.11) together, we find that

ϕ1(τ) = ϕ1 (V τ) (cτ + d)4 +
2ci

E6 (V τ)
(cτ + d)5 (11.5.12)

and, after squaring both sides of (11.5.10),

ϕ2(τ) = ϕ2(V τ)(cτ +d)2 +4ciϕ1(V τ)(cτ +d)3− 4c2

E6(V τ)
(cτ +d)4 . (11.5.13)

We now prove that modified versions of Theorem 11.2.1 hold when the
functional equation (11.2.1) is replaced by either (11.5.12) or (11.5.13).

When we replace (11.2.1) by either (11.5.12) or (11.5.13), the parts of
the proof that are affected are the estimation of the integral (11.2.5) and the
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calculation of the residues of ϕj . The only resulting change in the statement
of the theorem itself is a slight modification of (11.2.2).

When we replace (11.2.1) by (11.5.12) or (11.5.13), the function ϕj(τ)
satisfies the conditions of Theorem 11.2.1 for j = 1 or 2 with α = i, because
P (q) is analytic in the unit circle.

We now estimate the integral (11.2.5). Using the notation in the paragraph
surrounding (11.2.11), we let

V ∗τ := (k
′
τ − h

′
)/(−kτ + h). (11.5.14)

By (11.5.12) and (11.5.13), our estimates for ϕ in (11.2.24) are replaced by,
respectively,

|ϕ1(τ)| ≤ |ϕ1 (V ∗τ)| | − kτ + h|4 +
2k

|E6 (V ∗τ)| | − kτ + h|5 (11.5.15)

and

|ϕ2(τ)| ≤ |ϕ2 (V ∗τ)| | − kτ + h|2 + 4k |ϕ1 (V ∗τ)| | − kτ + h|3

+
4k2

|E6 (V ∗τ)| | − kτ + h|4 . (11.5.16)

As we have seen, Theorem 11.2.1 can be applied to the function 1/E6(τ) (as
Hardy and Ramanujan [177] did). Thus, on the boundary of P ,∣∣∣∣ 1

E6(τ)

∣∣∣∣ < M̃, (11.5.17)

for some positive constant M̃ . By (11.5.15), (11.5.17), (11.2.22), and (11.2.25),

|ϕ1(τ)| < M | − kτ + h|4 + 2kM̃ | − kτ + h|5

= k4M |τ − h/k|4 + 2k6M̃ |τ − h/k|5

<
16M

(k2 + kk′ + k′2)2
+

64kM̃

(k2 + kk′ + k′2)5/2

<
M0

(k2 + kk′ + k′2)2
, (11.5.18)

where M0 is some positive constant.
Similarly,

|ϕ2(τ)| <
M̂0

k2 + kk′ + k′2 , (11.5.19)

where M̂0 is some positive constant. Note that the inequalities (11.5.18) and
(11.5.19) are similar to (11.2.26). The remainder of the argument is the same
as before, and so the integral in (11.2.5) approaches 0 as m approaches ∞ in
the cases of ϕ1 and ϕ2.

Next we evaluate Res(ϕj , i) using the following lemma.



11.5 The Coefficients of (πP (q)/3)/R(q) and (πP (q)/3)2/R(q) 283

Lemma 11.5.1. Let V τ = (aτ + b)/(cτ +d), where a, b, c, and d are integers
satisfying ad − bc = 1. Then

π

3
E∗

2 (V i) =
π

3
P (q2) = c2 + d2, (11.5.20)

where

q = exp
(

πi

(
ai + b

ci + d

))
.

Proof. Consider the function E2(τ) defined in (11.1.6). From [51, p. 159], [53,
p. 256],

E2(i) = 1 − 24
∞∑

k=1

k

e2πk − 1
− 3

π
= 0. (11.5.21)

By (11.5.21), (11.1.6), and the definition of q above,

0 = E2(V i) = 1−24
∞∑

k=1

kq2k

1 − q2k
− 3

πIm (V i)
= 1−24

∞∑
k=1

kq2k

1 − q2k
− 3

π
(c2+d2) ,

and hence we obtain (11.5.20). ��

By (11.2.36), or more precisely the sentence preceding (11.2.36), and
(11.4.13),

Res
(

1
E6(τ)

, V i

)
=

Res (1/E6(τ), i)
(ci + d)8

=
−1/(J2πi)
(ci + d)8

=
−1/(Cπi)
(ci + d)8

,

by a result of Ramanujan [240, Table I, Entry 4], [242, p. 141], where J is
defined in (11.4.6) and C is defined in (11.5.3). By (11.2.37) and the calculation
above,

Res
(

1
R(q2)

, q

)
= −

q

C(ci + d)8
. (11.5.22)

It follows from (11.5.20) and (11.5.22) that

Res
(
fj(q), q

)
= −(c2 + d2)j

q

C(ci + d)8
. (11.5.23)

When we replace (11.2.37) with (11.5.23), the analogue of (11.2.38) becomes,
or, alternatively, (11.2.33) becomes,

fj(q) =
2
C

∑
(c,d)

μj

(ci + d)8
1

1 − (q/q)2
, (11.5.24)

where μ = c2 + d2.
Thus, the conclusion of Theorem 11.2.1 is valid for ϕj if we replace (11.2.2)

by (11.5.24).
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Since the quantity q is the same for ϕj as for ϕ in Entry 11.4.1, the analysis
involving the values of (c, d) counted in the summation in (11.4.14) is valid
for ϕj as well. So by (11.4.20), (11.4.23), and (11.4.24), we find that

fj(q) =
2
C

⎧⎪⎪⎨
⎪⎪⎩
∑
(μ)
μ≤2

μj

(ci + d)8
1

1 − (q/q)2

+
∑
(μ)
μ>2

(
μj

(ci + d)8
1

1 − (q/q)2
+

μj

(−ci + d)8
1

1 − (q/q̄)2

)}

=
2
C

{
1

1 − q2e2π − 2j

24

1
1 + q2eπ

+
∑
(μ)
μ>2

(
μj

(ci + d)8
1

1 − (q/q)2
+

μj

(−ci + d)8
1

1 − (q/q̄)2

)}

=
∞∑

n=0

ηj,nq2n,

where, for j = 1, 2,

ηj,n =
2
C

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

24−j
enπ +

∑
(μ)
μ>2

(
μj

(ci + d)8
q−2n +

μj

(−ci + d)8
q̄−2n

)
⎫⎪⎪⎬
⎪⎪⎭

=
2
C

⎧⎪⎪⎨
⎪⎪⎩

e2nπ − (−1)n

24−j
enπ +

∑
(μ)
μ>2

2 cos
(

(ac + bd)
2nπ

μ
+ 8arctan

d

c

)

μ4−j
e2nπ/μ

⎫⎪⎪⎬
⎪⎪⎭

=
2
C

∑
(μ)

Wμ(n)e2nπ/μ

μ4−j
, (11.5.25)

by (11.5.7). In (11.5.25), as in (11.4.20), μ runs over all integers of the form
(11.4.4), and for each fixed μ, the sum is also over all distinct pairs (c, d).

Thus, the proof of (11.5.4) is complete. ��

11.6 The Coefficients of (πP (q)/2
√

3)/Q(q)

The theorem in this section is from the same fragment [244, pp. 102–104] as
the previous theorem, and the proof is very similar.
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Entry 11.6.1 (p. 103). Let

f(q) :=
πP (q2)

2
√

3Q(q2)
=

∞∑
n=0

θnq2n , |q| < q0. (11.6.1)

Then, if n ≥ 0,

θn = (−1)n 3
G

∑
(λ)

hλ(n)
λ2 enπ

√
3/λ , (11.6.2)

where λ runs over the integers of the form (11.3.4), and G and hλ(n) are
defined in (11.3.5) and (11.3.8), respectively. Also, distinct solutions (c, d) to
λ = c2 − cd + d2, which were defined before Entry 11.3.1, give rise to distinct
terms in the sum in (11.6.2). If n < 0, the sum on the right side of (11.6.2)
equals 0.

Proof. By (11.6.1), (11.1.2), (11.1.4), and (11.1.5),

ϕ(τ) =
πE∗

2 (τ)
2
√

3E4(τ)
.

By (11.5.10) and (11.3.9) (note that in (11.3.9), ϕ(τ) = 1/E4(τ)), we obtain
the functional equation

ϕ(τ) = ϕ(V τ)(cτ + d)2 +

√
3ci

E4(V τ)
(cτ + d)3 , (11.6.3)

where V τ = (aτ + b)/(cτ + b) is a modular transformation, that is to say,
a, b, c, d ∈ Z and ad − bc = 1. Recall the notation (11.5.14). The analogue of
the estimate of ϕ1 in (11.5.15) is thus

|ϕ(τ)| ≤ |ϕ (V ∗τ)| | − kτ + h|2 +

√
3k

|E4 (V ∗τ)| | − kτ + h|3 . (11.6.4)

As with ϕj(τ), the function ϕ(τ) satisfies the conditions of a modified
form of Theorem 11.2.1; here (11.2.1) is replaced by (11.6.3), and α = ρ =
−1/2 + i

√
3/2 .

In Entry 11.3.1, we applied Theorem 11.2.1 to the modular form 1/E4(τ).
Thus, we can apply (11.2.22) to both ϕ and 1/E4(τ), with M replaced by
the positive constant M̃ in the latter application, to obtain, by (11.6.3) and
(11.2.25),

|ϕ(τ)| < M | − kτ + h|2 +
√

3kM̃ | − kτ + h|3

= k2M |τ − h/k|2 +
√

3k4M̃ |τ − h/k|3

<
4M

k2 + kk′ + k′2 +
8
√

3kM̃

(k2 + kk′ + k′2)3/2
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<
M0

k2 + kk′ + k′2 ,

where M̃ and M0 are certain positive constants. This implies that the integral
in (11.2.5) approaches 0 as m approaches ∞.

We now determine the residues of ϕ(τ) using the following lemma.

Lemma 11.6.1. For ρ = −1/2 + i
√

3/2,

π

2
√

3
E∗

2 (V ρ) =
π

2
√

3
P (q2) = c2 − cd + d2, (11.6.5)

where V τ = (aτ + b)/(cτ + d), with a, b, c, and d being integers satisfying
ad − bc = 1 and

q = exp
(

πi

(
aρ + b

cρ + d

))
.

Proof. From (11.1.6) and a result of Berndt [51, p. 159],

E2(ρ) = 1 − 24
∞∑

k=1

(−1)kke−π
√

3k

1 − (−1)ke−π
√

3k
− 2

√
3

π
= 0 .

Thus,

0 = E2(V ρ) = P (q2) − 3
πIm (V ρ)

= P (q2) − 2
√

3
π

(c2 − cd + d2).

This proves (11.6.5). ��

We now return to the proof of Entry 11.6.1. By (11.3.12),

Res
(

1
E4(τ)

, ρ

)
= − 3

2πiG
, (11.6.6)

and so, by (11.2.37),

Res
(

1
Q(q2)

, q

)
= −

3q

2G(cρ + d)6
. (11.6.7)

It follows from (11.6.5) and (11.6.7) that

Res
(
f(q), q

)
= (c2 − cd + d2)

(
−

3q

2G(cρ + d)6

)
= −

3qλ

2G(cρ + d)6
, (11.6.8)

where λ = c2 − cd + d2. By (11.2.38), we then deduce that

f(q) =
3
G

∑
(c,d)

λ

(cρ + d)6
1

1 − (q/q)2
. (11.6.9)
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Since q is the same as in Entry 11.3.1, we have, by (11.3.20) and (11.3.23),
for |q| < e−π

√
3/2,

f(q) =
3
G

{
1

1 + eπ
√

3q2
− 3

33

1

1 + eπ
√

3/3q2

+
∑
(λ)
λ>3

(
λ

(cρ + d)6
1

1 − (q/q)2
+

λ

(dρ + c)6
1

1 − (q/q̄)2

)}

=
∞∑

n=0

θnq2n ,

where

θn =
3
G

{
(−1)nenπ

√
3 − (−1)n

32 enπ
√

3/3

+
∑
(λ)
λ>3

λ

(
1

(cρ + d)6
q−2n +

1
(dρ + c)6

q̄−2n

)}
. (11.6.10)

In (11.6.10), λ runs over all integers of the form (11.3.4), and, for each fixed
λ, the sum is also over all distinct pairs (c, d).

Apart from the factor of λ, the summands in (11.6.10) are the same as
those in (11.3.24), and so by (11.3.29), (11.3.31), and (11.3.32), we conclude
that

θn = (−1)n 3
G

∑
(λ)

hλ(n)
λ2 enπ

√
3/λ,

where hλ(n) is defined in (11.3.8). This completes the proof of Entry 11.6.1
for n ≥ 0.

For n < 0, assume |q| > 1 and proceed as in the previous proofs. ��

11.7 Eight Identities for Eisenstein Series and Theta
Functions

Two of the identities considered here involve the classical theta functions (in
Ramanujan’s notation)

ϕ(q) :=
∞∑

k=−∞
qk2

and ψ(q) :=
∞∑

k=0

qk(k+1)/2. (11.7.1)

To establish the eight identities, we need to use evaluations of theta functions
and Eisenstein series from Chapter 17 of Ramanujan’s second notebook [243],
[54, pp. 122–138]. If
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q := exp
(
−π

2F1( 1
2 , 1

2 ; 1; 1 − x)

2F1( 1
2 , 1

2 ; 1;x)

)
, 0 < x < 1,

where 2F1 denotes the ordinary hypergeometric function, these evaluations
are given in terms of, in Ramanujan’s notation,

z := 2F1( 1
2 , 1

2 ; 1;x), 0 < x < 1, (11.7.2)

and x.

Entry 11.7.1 (pp. 116–117). Recall that Q(q) and R(q) are defined by
(11.1.2) and (11.1.3), respectively, that B(q) is defined by (11.1.10), and that
ϕ(q) and ψ(q) are defined in (11.7.1). Then

B(
√

q) + B(−√
q) = 2B(q),(i)

B(
√

q)B(−√
q)B(q) = R(q),(ii)

Q(q) + 4Q(q2) = 5B2(q),(iii)
−R(q) + 8R(q2) = 7B3(q)(iv)

2
3

(
1

B(
√

q)
+

1
B(−√

q)

)
− 1

3B(q)
=

Q(q)
R(q)

,(v)

11
24

(
1

B(
√

q)
+

1
B(−√

q)

)
+

1
12B(q)

=
Q(q2)
R(q)

,(vi)

−Q(q) + 16Q(q2) = 15ϕ8(−q),(vii)
Q(q) − Q(q2) = 240qψ8(q).(viii)

Proof of (i). The proof is straightforward, with only the definition of B(q)
in (11.1.10) needed in the proof. ��
Proof of (ii). By Part (i), with the replacement of

√
q by q, we can rewrite

(ii) in the form

B(q)
{
2B(q2) − B(q)

}
B(q2) = R(q2). (11.7.3)

By (11.1.10), we easily see that

2P (q2) − P (q) = B(q). (11.7.4)

From Entries 13(viii), 13(ix), and 13(ii) in Chapter 17 of Ramanujan’s
second notebook [54, pp. 126–127],

B(q) = 2P (q2) − P (q) = z2(1 + x), (11.7.5)

B(q2) = 2P (q4) − P (q2) = z2(1 − 1
2x), (11.7.6)

R(q2) = z6(1 + x)(1 − 1
2x)(1 − 2x), (11.7.7)

where z is defined in (11.7.2). Using the evaluations (11.7.5)–(11.7.7) in
(11.7.3), we find that each side of (11.7.3) equals

z6(1 + x)(1 − 1
2x)(1 − 2x),

which completes the proof of (ii). ��
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Proof of (iii). By Entries 13(iii) and 13(i) in Ramanujan’s second notebook
[54, pp. 126–127],

Q(q) = z4(1 + 14x + x2) and Q(q2) = z4(1 − x + x2). (11.7.8)

Using (11.7.5) and (11.7.8) in (iii), we find that each side of (iii) reduces to

z4(5 + 10x + 5x2),

thus establishing the truth of (iii). ��

Proof of (iv). By Ramanujan’s work in Chapter 17 of his second notebook
[54, p. 127, Entry 13(iv)],

R(q) = z6(1 + x)(1 − 34x + x2). (11.7.9)

Thus, by (11.7.9), (11.7.5), and (11.7.7), each side of (iv) can be written in
the form

7z6(1 + x)3.

This completes the proof of (iv). ��

Proof of (v). Replacing
√

q by q and using (i), we can rewrite (v) in the
form

2
3

(
1

B(q)
+

1
2B(q2) − B(q)

)
− 1

3B(q2)
=

Q(q2)
R(q2)

. (11.7.10)

By (11.7.5) and (11.7.6),

1
B(q)

+
1

2B(q2) − B(q)
=

1
z2(1 + x)

+
1

z2(1 − 2x)
. (11.7.11)

Utilizing (11.7.11) and (11.7.6) and employing a heavy dose of elementary
algebra, we find that the left side of (11.7.10) reduces to

1 − x + x2

z2(1 + x)(1 − 2x)(1 − 1
2x)

. (11.7.12)

On the other hand, by (11.7.7) and (11.7.8), the right side of (11.7.10) also
reduces to (11.7.12). This completes then the proof of (11.7.10), and hence of
(v). ��

Proof of (vi). Replacing
√

q by q and using (i), we can rewrite (vi) in the
form

11
24

(
1

B(q)
+

1
2B(q2) − B(q)

)
+

1
12B(q2)

=
Q(q4)
R(q2)

. (11.7.13)

Using (11.7.11) and (11.7.6), we find that the left side of (11.7.13) takes the
shape
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1 − x + 1
16x2

z2(1 + x)(1 − 2x)(1 − 1
2x)

. (11.7.14)

Again, from Ramanujan’s work [54, p. 127, Entry 13(v)],

Q(q4) = z4(1 − x + 1
16x2), (11.7.15)

so that, by (11.7.15) and (11.7.7), the right side of (11.7.13) also reduces to
(11.7.14). This completes the proof of (vi). ��
Proof of (vii). By Entry 10(ii) in Chapter 17 of Ramanujan’s second note-

book [54, p. 122],
ϕ(−q) =

√
z(1 − x)1/4. (11.7.16)

Thus the left side of (vii) takes the shape

15z4(1 − x)2, (11.7.17)

while by (11.7.8) the right side of (vii) also equals (11.7.17). ��
Proof of (viii). Appealing again to Chapter 17 of Ramanujan’s second note-

book [54, p. 123, Entry 11(i)], we have

ψ(q) =

√
1
2
z(x/q)1/8. (11.7.18)

Thus, by (11.7.18), the left side of (viii) equals

240( 1
16z4x) = 15z4x, (11.7.19)

while, by (11.7.8), the right side of (viii) equals (11.7.19) as well. ��

11.8 The Coefficients of 1/B(q)

Define the coefficients bn by

1
B(q)

=
∞∑

n=0

bnqn, (11.8.1)

where |q| < q0 < 1, for q0 sufficiently small.
We are now ready to state the first main theorem about B(q), which

establishes an assertion of Ramanujan from his letter to Hardy containing
Entry 11.4.1 [244, p. 117], [74, p. 190]. For the sake of brevity, we write

δn =
∑
(μ)

Vμ(n), (11.8.2)

where

Vμ(n) =
2
J

vμ(n)
μ2 e2nπ/μ, (11.8.3)

where vμ(n) is defined by (11.4.8) and (11.4.9).
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Entry 11.8.1 (p. 117). Recall that the coefficients bn are defined by (11.8.1).
Then, with Vμ(n) defined by (11.8.3),

bn = −3
∑
(μe)

Vμe
(n), (11.8.4)

where μe runs over the even values of μ. In other words, μe runs over the
even integers of the form (11.4.4).

Set β(τ) = B(q), where q = exp(2πiτ). Then β(τ) is a modular form on
Γ0(2), as we show in the next lemma. We remark that β(τ) is not a modular
form on Γ (1), because the dimension of the space of modular forms of weight
2 with multiplier system identically equal to 1 on Γ (1) is zero [246, p. 103].

Lemma 11.8.1. The function β(τ) is a modular form of weight 2 and multi-
plier system identically equal to 1 on the group Γ0(2). That is,

β

(
aτ + b

cτ + d

)
= (cτ + d)2β(τ),

where a, b, c, d ∈ Z; ad − bc = 1; and c is even.

Proof. Recall that E∗
2 (τ) is defined by (11.1.5). Thus, by (11.7.4),

2E∗
2 (2τ) − E∗

2 (τ) = β(τ). (11.8.5)

Recall [255, pp. 50, 68] that for any modular transformation (aτ +b)/(cτ +d),

E∗
2

(
aτ + b

cτ + d

)
= (cτ + d)2E∗

2 (τ) − 6ci

π
(cτ + d), (11.8.6)

and so

E∗
2

(
2
aτ + b

cτ + d

)
= E∗

2

⎛
⎝a(2τ) + 2b

c

2
(2τ) + d

⎞
⎠ = (cτ+d)2E∗

2 (2τ)−3ci

π
(cτ+d), (11.8.7)

for c even. Thus, by (11.8.6) and (11.8.7),

2E∗
2

(
2
aτ + b

cτ + d

)
− E∗

2

(
aτ + b

cτ + d

)
= (cτ + d)2 (2E∗

2 (2τ) − E∗
2 (τ)) . (11.8.8)

By (11.8.8) and (11.8.5), we complete the proof. ��

Lemma 11.8.2. The function 1/β(τ) has a simple pole at τ = 1
2 (1 + i), and

this is the only pole in a fundamental region of Γ0(2).

By Lemmas 11.8.1 and 11.8.2, it follows that 1/β(τ) has poles at the points
τ = (a 1

2 (1 + i) + b)/(c1
2 (1 + i) + d), where a, b, and d are integers, c is an

even integer, and ad − bc = 1. By the valence formula [246, p. 98], there are
no further poles of 1/β(τ) in a fundamental region of Γ0(2).
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Proof of Lemma 11.8.2. By (11.8.5) and (11.1.6), we easily see that

1
β(τ)

=
1

2E2(2τ) − E2(τ)
. (11.8.9)

We show that both functions in the denominator of (11.8.9) vanish at τ =
1
2 (1 + i). First, by (11.5.21),

E2(i) = 0. (11.8.10)

Thus, by periodicity,

E2

(
2
1 + i

2

)
= E2(1 + i) = E2(i) = 0,

and, since E2(τ) satisfies the functional equation of a modular form of weight
2,

E2

(
1 + i

2

)
= E2

(
i

1 + i

)
= E2

(
0 + 1i
1 + 1i

)
= (1 + i)2E2(i) = 0.

Thus, both terms in the denominator of (11.8.9) vanish, and the proof of the
lemma is therefore complete. ��

The main theorem of Hardy and Ramanujan, Theorem 11.2.1, is there-
fore inapplicable. However, Poincaré [176, pp. 210–215, 432–462, 606–614,
618 (paragraph 2)], Lehner [201], and particularly Petersson [228, pp. 460–
461, Satz 3], [229], [230] have extensively generalized Hardy and Ramanujan’s
theorem. We only need the special case for the subgroup Γ0(2), which we state
below.

Theorem 11.8.1. Suppose that f(q) = f(eπiτ ) = φ(τ) is analytic for q = 0,
is meromorphic in the unit circle, and satisfies the functional equation

φ(τ) = φ

(
aτ + b

cτ + d

)
(cτ + d)n, (11.8.11)

where a, b, c, d ∈ Z; ad− bc = 1; c is even; and n ∈ Z+. If φ(τ) has only one
pole in a fundamental region for Γ0(2), a simple pole at τ = α with residue
A, then

f(q) = −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

, |q| < q0, (11.8.12)

where

q = exp
((

aα + b

cα + d

)
πi

)
, (11.8.13)

and the summation runs over all pairs of coprime integers (c, d) (with c even)
that yield distinct values for the set {q,−q}, and a and b are any integral
solutions of

ad − bc = 1. (11.8.14)
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We are now prepared to prove Entry 11.8.1.

Proof of Entry 11.8.1. Using (11.7.4) and (11.1.7), we find that

B′(q) = 4qP ′(q2) − P ′(q)

=
P 2(q2) − Q(q2)

3q
− P 2(q) − Q(q)

12q

=
1

12q

{(
2P (q2) − P (q)

) (
2P (q2) + P (q)

)
− 4Q(q2) + Q(q)

}

=
1

12q

{
B(q)

(
2P (q2) + P (q)

)
− 4Q(q2) + Q(q)

}
. (11.8.15)

By Lemma 11.8.2, B(−e−π) = 0, and therefore from Entry 11.7.1 (iii), we
deduce that

Q(−e−π) = −4Q(e−2π). (11.8.16)

Hence, setting q = −e−π in (11.8.15), we find that

B′(−e−π) =
1

12(−e−π)
{
−8Q(e−2π)

}
=

2
3
eπQ(e−2π), (11.8.17)

which is explicitly calculated in Proposition 11.8.2 below.
We now apply Theorem 11.8.1 to φ(τ) = f(q) := 1/B(q2), where q = eπiτ

and α := (1 + i)/2. By the chain rule,

A = Res(φ, α) =
Res(f, eπiα)

πieπiα
, (11.8.18)

and, by (11.8.17),

Res(f, eπiα) = Res
(

1
B(q2)

, eπiα

)
=

1
dB(q2)/dq

∣∣∣∣
q=eπiα

=
1

2qB′(q2)

∣∣∣∣
q=eπiα

=
1

2eπiα

3e−π

2Q(e−2π)
. (11.8.19)

Hence, combining (11.8.18) and (11.8.19), we deduce that

− 2πiA = − 2πi

πieπiα

3e−π

4eπiαQ(e−2π)
=

3
2Q(e−2π)

. (11.8.20)

We next calculate q. Recall that ad − bc = 1 with c even. Thus, d is odd.
Hence,

q = exp
(

πi
aα + b

cα + d

)
= exp

(
πi

a + 2b + ai

c + 2d + ci

)

= exp
(

πi
(a + 2b + ai)(c + 2d − ci)

c2 + 4cd + 4d2 + c2

)
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= exp
(

πi
(a + b)(c + d) + bd + i

(c + d)2 + d2

)
.

Let μ = c′2 + d2, where c′ = c + d, and let a′ = a + b. Note that a′d− bc′ = 1
and that μ is even. Thus,

q = exp
(

πi
a′c′ + bd + i

μ

)
= exp

(
−π

μ

)
exp
(

πi
a′c′ + bd

μ

)
. (11.8.21)

Next,

cα + d = c
1
2
(1 + i) + d =

1
1 + i

(ci + d + di) =
1

1 + i
(c′i + d), (11.8.22)

where c′ = c + d.
The requisite calculations have now been made in order to apply Theorem

11.8.1. By (11.8.1), (11.8.20), and (11.8.22), we deduce that

∞∑
n=0

bnq2n =
1

B(q2)
=

3
2Q(e−2π)

∑
(c′,d)

1
(1 + i)−4(c′i + d)4

1
1 − (q/q)2

= − 6
Q(e−2π)

∑
(c′,d)

1
(c′i + d)4

1
1 − (q/q)2

, (11.8.23)

where the sum is over all pairs c′, d with a′d − bc′ = 1 and c′ odd (since c is
even and d is odd), and where q is given by (11.8.21). Now from (11.4.14),

∞∑
n=0

δnq2n =
Q(q2)
R(q2)

=
2

Q(e−2π)

∑
(c,d)

1
(ci + d)4

1
1 − (q/q)2

, (11.8.24)

where the sum is over all pairs c, d with ad − bc = 1, and where

q = exp
(

πi
ai + b

ci + d

)
= exp

(
−π

μ

)
exp
(

πi
ac + bd

μ

)
.

A comparison of (11.8.23) and (11.8.24) shows that the right sides of (11.8.23)
and (11.8.24) are identical except in two respects. First, in (11.8.23), there is
an extra factor of −3 on the right side. Second, upon expanding the summands
in geometric series on the right sides of (11.8.23) and (11.8.24), we see that
the sum in (11.8.23) is over only even μ. In other words,

bn = −3
∑
(μe)

Vμe
(n),

where Vμe
(n) is defined by (11.8.3). This completes the proof. ��
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The series in (11.8.4) converges very rapidly to bn. Using Mathematica, we
calculated bn, 1 ≤ n ≤ 10, and the first two terms of (11.8.4). As the following
table shows, only two terms of the series give extraordinary approximations.

n bn −3(V2(n) + V10(n))
1 −24 −23.971586
2 552 551.992987
3 −12,768 −12,768.016604
4 295,464 295,463.973727
5 −6,837,264 −6,837,264.003874
6 158,219,040 158,219,040.077478
7 −3,661,298,112 −3,661,298,112.002170
8 84,724,974,120 84,724,974,119.926326
9 −1,960,594,584,504 −1,960,594,584,504.044556
10 45,369,516,658,032 45,369,516,658,031.999703

Using Entry 11.7.1 (v), we can easily establish a formula for δn in terms
of bn, but we were unable to use this relation to prove Entry 11.8.1.

Proposition 11.8.1. For each positive integer n,

δn =
4
3
b2n − 1

3
bn.

Proof. By Entry 11.7.1(v), (11.4.5), and (11.8.1),

∞∑
n=0

δnqn =
Q(q)
R(q)

=
2
3

(
1

B(
√

q)
+

1
B(−√

q)

)
− 1

3B(q)

=
2
3

( ∞∑
n=0

bn(
√

q)n +
∞∑

n=0

bn(−√
q)n

)
− 1

3

∞∑
n=0

bnqn

=
4
3

∞∑
n=0

b2nqn − 1
3

∞∑
n=0

bnqn.

��

In our previous attempts to prove Entry 11.8.1, we showed that Vμ(n), for
μ odd, is a multiple of Vμ(2n) when μ is even. Although we were not able to
use this result in our goal, we think the formula is very interesting by itself
and so prove it now.

Theorem 11.8.2. For each positive integer n,

Vμo
(n) = −4V2μo

(2n), (11.8.25)

where μo is an odd integer of the form (11.4.4).
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Proof. We first easily establish the case μo = 1. From (11.8.3) and (11.4.8),
we see that

V1(n) =
2
J

e2nπ,

while

−4V2(2n) =
−8
J

(−1)2n+1

22 e4nπ/2 =
2
J

e2nπ.

Now we assume that μo > 1. Suppose that (a1, b1, c1, d1) satisfies

ad − bc = 1, (11.8.26)

with c2 +d2 = μo. We can assume, without loss of generality, that a1 > b1 > 0
and that a1 and b1 are odd. Since

(c1 + d1)2 + (c1 − d1)2 = 2μo,

we find that if we let

c2 = c1 + d1 and d2 = c1 − d1, (11.8.27)

then (c2, d2) satisfies
c2 + d2 = 2μo.

Similarly, if we let

a2 = −1
2
(a1 + b1) and b2 = −1

2
(a1 − b1), (11.8.28)

then (a2, b2, c2, d2) satisfies (11.8.26). By (11.8.3) and (11.4.9), in order to
prove (11.8.25), it suffices to prove that

2
J

2 cos
{

(a1c1 + b1d1)
2nπ

μo
+ 4 tan−1 c1

d1

}

μ2
0

e2nπ/μo

= − 8
J

2 cos
{

(a2c2 + b2d2)
4nπ

2μo
+ 4 tan−1 c2

d2

}

(2μo)2
e4nπ/(2μo),

or equivalently that

cos
{

(a1c1 + b1d1)
2nπ

μo
+ 4 tan−1 c1

d1

}

= − cos
{

(a2c2 + b2d2)
2nπ

μo
+ 4 tan−1 c2

d2

}
. (11.8.29)

By the identities (11.8.27) and (11.8.28), we can rewrite the right-hand side
as
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− cos
{(

−1
2
(a1 + b1)(c1 + d1) −

1
2
(a1 − b1)(c1 − d1)

)
2nπ

μo

+4 tan−1 c1 + d1

c1 − d1

}

= − cos
{

(−a1c1 − b1d1)
2nπ

μo
+ 4 tan−1 c1 + d1

c1 − d1

}
. (11.8.30)

Note that
Arctan

c1 + d1

c1 − d1
=

kπ

4
− Arctan

c1

d1
, (11.8.31)

where k ≡ 3 (mod 4). Using (11.8.31), we can rewrite the latter expression in
(11.8.30) as

− cos
{
−(a1c1 + b1d1)

2nπ

μo
− 4 tan−1 c1

d1
+ kπ

}

= cos
{

(a1c1 + b1d1)
2nπ

μo
+ 4 tan−1 c1

d1

}
.

Thus, (11.8.29) has been proved, and hence (11.8.25) as well. ��

We close this section by showing that Q(e−2π) in Entry 11.4.1 can be
evaluated in closed form. Then in a corollary, we evaluate another interesting
series.

Proposition 11.8.2. We have

Q(e−2π) =
3π2

4Γ 8( 3
4 )

. (11.8.32)

Proof. We apply Entry 13(i) in Chapter 17 of Ramanujan’s second notebook
[54, p. 126]. In [54], M(q) = Q(q), in the present notation. Set y = π there,
and note that x = 1

2 . We find immediately that

Q(e−2π) = 3
4 2F

4
1 ( 1

2 , 1
2 ; 1; 1

2 ) =
3π2

4Γ 8( 3
4 )

,

where we have employed a special case of a well-known theorem of Gauss,
rediscovered by Ramanujan [53, p. 42, Entry 34]. (See also [54, p. 103, equation
(6.15)].) Hence, (11.8.32) has been shown. ��

Corollary 11.8.1. We have

∞∑
n=0

(2n + 1)2

cosh2{(2n + 1)π/2}
=

π2

12Γ 8( 3
4 )

.
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Proof. From the definition of B(q) in (11.1.10), we easily find that

B′(q) = 24
∞∑

n=0

(2n + 1)2q2n

(1 − q2n+1)2
.

Setting q = −e−π and using (11.8.17), we find that

2
3
eπQ(e−2π) = B′(−e−π) = 24eπ

∞∑
n=0

(2n + 1)2e−(2n+1)π

(1 + e−(2n+1)π)2

= 6eπ
∞∑

n=0

(2n + 1)2

cosh2{(2n + 1)π/2}
.

If we now use (11.8.32) on the left side above and simplify, we complete the
proof. ��

Corollary 11.8.1 might be compared with further explicit evaluations of
series containing the hyperbolic function cosh given by Ramanujan in Entry
16 of Chapter 17 in his second notebook [54, p. 134], in Entry 6 of Chapter 18
in his second notebook [54, p. 153], and in two particular results in his first
notebook [57, pp. 398, 402, Entries 76, 78].

11.9 Formulas for the Coefficients of Further Eisenstein
Series

Ramanujan [244, pp. 117–118], [74, pp. 190–191] concludes his letter to Hardy
with three identities that are similar to (11.8.4). We show how each of the
identities follows from (11.8.4), but first we need to make several definitions.

Let, for |q| < q0,

Q(q2)
R(q)

=:
∞∑

n=0

σnqn,
ϕ8(−q)
R(q)

=:
∞∑

n=0

vnqn, and
qψ8(q)
R(q)

=:
∞∑

n=0

χnqn.

(11.9.1)

Entry 11.9.1 (pp. 117–118). Suppose that (11.8.4) holds. Then

σn =
11
16

∑
(μo)

Vμo
(n) − 1

4

∑
(μe)

Vμe
(n),(i)

vn =
2
3

∑
(μo)

Vμo
(n) − 1

3

∑
(μe)

Vμe
(n),(ii)

χn =
1

768

∑
(μo)

Vμo
(n) +

1
192

∑
(μe)

Vμe
(n),(iii)

where μo and μe run over the odd and even integers of the form (11.4.4),
respectively.
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Proof of (i). By (11.9.1), Entry 11.7.1(vi), (v), (11.4.5), and (11.8.1),

∞∑
n=0

σnqn =
11
24

(
1

B(
√

q)
+

1
B(−√

q)

)
+

1
12B(q)

=
11
16

(
2
3

(
1

B(
√

q)
+

1
B(−√

q)

)
− 1

3B(q)

)
+

5
16

1
B(q)

=
11
16

Q(q)
R(q)

+
5
16

1
B(q)

=
11
16

∞∑
n=0

δnqn +
5
16

∞∑
n=0

bnqn.

Thus, by (11.8.2) and (11.8.4),

σn =
11
16

δn +
5
16

bn

=
11
16

∑
(μ)

Vμ(n) +
5
16

⎛
⎝−3

∑
(μe)

Vμe
(n)

⎞
⎠

=
11
16

∑
(μo)

Vμo
(n) − 1

4

∑
(μe)

Vμe
(n) .

��

Proof of (ii). By (11.9.1), Entry 11.7.1(vii), and (11.4.5),

∞∑
n=0

vnqn = − 1
15

Q(q)
R(q)

+
16
15

Q(q2)
R(q)

= − 1
15

∞∑
n=0

δnqn +
16
15

∞∑
n=0

σnqn.

Thus, by (11.8.2) and part (i),

vn = − 1
15

δn +
16
15

σn

= − 1
15

∑
(μ)

Vμ(n) +
16
15

⎛
⎝11

16

∑
(μo)

Vμo
(n) − 1

4

∑
(μe)

Vμe
(n)

⎞
⎠

=
2
3

∑
(μo)

Vμo
(n) − 1

3

∑
(μe)

Vμe
(n) .

��

Proof of (iii). By (11.9.1), Entry 11.7.1(viii), and (11.4.5),

∞∑
n=0

χnqn =
1

240
Q(q)
R(q)

− 1
240

Q(q2)
R(q)

=
1

240

∞∑
n=0

δnqn − 1
240

∞∑
n=0

σnqn.
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Thus, by (11.8.2) and part (i),

χn =
1

240
δn − 1

240
σn

=
1

240

∑
(μ)

Vμ(n) − 1
240

⎛
⎝11

16

∑
(μo)

Vμo
(n) − 1

4

∑
(μe)

Vμe
(n)

⎞
⎠

=
1

768

∑
(μo)

Vμo
(n) +

1
192

∑
(μe)

Vμe
(n) .

��

11.10 The Coefficients of 1/B2(q)

In another letter to Hardy [244, pp. 105–109], [74, pp. 185–188], Ramanujan
offers a formula for the coefficients of 1/B2(q). By Lemma 11.8.2, 1/β2(τ) has
a double pole at (1 + i)/2. To the best of our knowledge, the generalizations
of the principal theorem of Hardy and Ramanujan [177, Theorem 1], [242,
p. 312] that we cited earlier do not consider double poles, mainly because of
calculational difficulties. In fact, after stating his main theorem, Lehner [201,
p. 65, Theorem 1] writes, “Poles of higher order can be treated in an analogous
manner, but the algebraic details, into which we do not enter here, become
rather complicated.” Since 1/β2(τ) has only one double pole on a fundamental
region for Γ0(2), we confine ourselves to stating our theorem for Γ0(2) only
and proving it for modular forms with only one double pole on a fundamental
region for Γ0(2).

Theorem 11.10.1. Suppose that f(q) = f(eπiτ ) = φ(τ) is analytic for q = 0,
is meromorphic in the unit circle, and satisfies the functional equation

φ(τ) = φ

(
aτ + b

cτ + d

)
(cτ + d)n, (11.10.1)

where a, b, c, d ∈ Z; ad − bc = 1; c is even; and n ∈ Z+. Assume that φ(τ)
has only one pole in a fundamental region for Γ0(2), a double pole at τ = α.
Suppose that f(q) and φ(τ) have the Laurent expansions,

φ(τ) =
r2

(τ − α)2
+

r1

τ − α
+ · · · =

�2
(q − eπiα)2

+
�1

q − eπiα
+ · · · = f(q).

(11.10.2)
Then

f(q) = 2πi
∑
c,d

{
cr2(n + 2)

(cα + d)n+3
− r1

(cα + d)n+2

}
1

1 − (q/q)2
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− 4π2r2

∑
c,d

1
(cα + d)n+4

(q/q)2

(1 − (q/q)2)2
, |q| < q0, (11.10.3)

where

q = exp
((

aα + b

cα + d

)
πi

)
, (11.10.4)

and the summation runs over all pairs of coprime integers (c, d) (with c even)
that yield distinct values for the set {q,−q}, and a and b are any integral
solutions of

ad − bc = 1. (11.10.5)

Furthermore,

r1 = − i�1
πeπiα

+
i�2

πe2πiα
and r2 = − �2

π2e2πiα
. (11.10.6)

Proof. For brevity, set

T := T (τ) :=
aτ + b

cτ + d
and Z :=

aα + b

cα + d
. (11.10.7)

We want to calculate the Laurent expansion of φ as a function of T in a
neighborhood of Z. Since

τ =
dT − b

−cT + a
, (11.10.8)

we easily find that

τ − α =
T (d + cα) − (b + aα)

−cT + a
=

T − aα + b

cα + d
−cT + a

(cα + d)

=
T − Z

−cT + a
(cα + d) =

T − Z

−cZ + a − c(T − Z)
(cα + d). (11.10.9)

However, by (11.10.7) and (11.10.5), we easily find that

− cZ + a =
1

cα + d
. (11.10.10)

Employing (11.10.10) in (11.10.9), we find that

τ − α =
T − Z

1 − c(cα + d)(T − Z)
(cα + d)2,

or
1

τ − α
=

1 − c(cα + d)(T − Z)
(T − Z)(cα + d)2

(11.10.11)

and
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1
(τ − α)2

=
1 − 2c(cα + d)(T − Z) + c2(cα + d)2(T − Z)2

(T − Z)2(cα + d)4
. (11.10.12)

We next seek the expansion of (cτ +d)n in powers of (T −Z). By (11.10.8),
(11.10.5), and (11.10.10),

(cτ + d)n = (−cT + a)−n

= ((−cZ + a) − c(T − Z))−n

=
(

1
cα + d

− c(T − Z)
)−n

= (cα + d)n (1 − c(cα + d)(T − Z))−n
. (11.10.13)

Thus, from (11.10.2), (11.10.11)–(11.10.13), and (11.10.1),

φ(τ) =
(

1
(cα + d)4(T − Z)2

− 2c

(cα + d)3(T − Z)
+

c2

(cα + d)2

)
r2

+
(

1
(cα + d)2(T − Z)

− c

cα + d

)
r1 + · · ·

= (cτ + d)nφ(T )

= (cα + d)n (1 − c(cα + d)(T − Z))−n

(
R2

(T − Z)2
+

R1

T − Z
+ · · ·

)
,

(11.10.14)

where R1 and R2 are the coefficients in the principal part of φ(T ) about Z.
Thus, rearranging (11.10.14), we easily find that

R2

(T − Z)2
+

R1

T − Z
+ · · · = (cα + d)−n (1 − cn(cα + d)(T − Z) + · · · )

×
((

1
(cα + d)4(T − Z)2

− 2c

(cα + d)3(T − Z)
+

c2

(cα + d)2

)
r2

+
(

1
(cα + d)2(T − Z)

− c

cα + d

)
r1 + · · ·

)
. (11.10.15)

It follows from above that

R1 = (cα + d)−n

(
− 2cr2

(cα + d)3
− cnr2

(cα + d)3
+

r1

(cα + d)2

)
(11.10.16)

and
R2 =

r2

(cα + d)n+4
. (11.10.17)

We now proceed as in [177, Theorem 1], [242, p. 312], or as in the proof of
Theorem 11.2.1. Recall that the definition of q is given in (11.8.13). Accord-
ingly,
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f(q) = −
∑

Res
(

f(z)
z − q

,±q

)
, (11.10.18)

where the sum is over all poles ±q. If

g(z) :=
1

z − q
,

then, by Taylor’s theorem,

g(z) =
1

±q − q
− 1

(±q − q)2
(z ∓ q) + · · · . (11.10.19)

Let us write f(z) as

f(z) =
P2

(z − z0)2
+

P1

z − z0
+ · · · .

Then

Res
(

f(z)
z − q

, z0

)
= P2

(
1

z − q

)′ ∣∣∣∣
z=z0

+ P1
1

z − q

∣∣∣∣
z=z0

. (11.10.20)

We need to find P1 and P2 for z0 = ±q.
Next, we take the Laurent expansion (11.10.15) and convert it into a Lau-

rent expansion in powers of (z − q). Observe that eπi(Z+1) = −q. Thus, the
Laurent expansion in powers of (z + q) arises from (11.10.15) with Z replaced
by Z + 1. Since the arguments in the two cases +q and −q are identical, we
consider only the poles +q. Set z = eπiτ and recall that q = eπiZ . Also, put

h(z) = log z − log q,

where the principal branch of log is chosen. Then, by Taylor’s theorem,

h(z) =
1
q
(z − q) − 1

2q2
(z − q)2 + · · · ,

and so
1

h(z)
=

q

z − q

(
1 +

1
2q

(z − q) + · · ·
)

and
1

h2(z)
=

q2

(z − q)2

(
1 +

1
q
(z − q) + · · ·

)
.

Hence,

R2

(τ − Z)2
+

R1

τ − Z
+ · · · = − R2π

2

(log z − log q)2
+

R1πi

log z − log q
+ · · ·
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= −
R2π

2q2

(z − q)2

(
1 +

1
q
(z − q) + · · ·

)

+
R1πiq

z − q

(
1 +

1
2q

(z − q) + · · ·
)

+ · · ·

= −
R2π

2q2

(z − q)2
+

1
z − q

(
−R2π

2q + R1πiq
)

+ · · · .

(11.10.21)

Therefore, by (11.10.20), (11.10.19), and (11.10.21),

Res
(

f(z)
z − q

, q

)
=

1
q − q

(
−R2π

2q + R1πiq
)

+
R2π

2q2

(q − q)2
. (11.10.22)

By a similar calculation,

Res
(

f(z)
z − q

,−q

)
=

1
−q − q

(
R2π

2q − R1πiq
)

+
R2π

2q2

(−q − q)2
. (11.10.23)

Hence, by (11.10.18), (11.10.22), (11.10.23), (11.10.16), and (11.10.17),

f(q) = −
∑
c,d

((
−π2qr2

(cα + d)n+4
−

πir2c(n + 2)q
(cα + d)n+3

+
πir1q

(cα + d)n+2

)
1

q − q

+
r2π

2q2

(cα + d)n+4(q − q)2

+

(
π2qr2

(cα + d)n+4
+

πir2c(n + 2)q
(cα + d)n+3

−
πir1q

(cα + d)n+2

)
1

−q − q

+
r2π

2q2

(cα + d)n+4(q + q)2

)

= 2πi
∑
c,d

{
cr2(n + 2)

(cα + d)n+3
− r1

(cα + d)n+2

}
1

1 − (q/q)2

+ 2π2r2

∑
c,d

1
(cα + d)n+4

1
1 − (q/q)2

− 2π2r2

∑
c,d

1
(cα + d)n+4

1 + (q/q)2

(1 − (q/q)2)2

= 2πi
∑
c,d

{
cr2(n + 2)

(cα + d)n+3
− r1

(cα + d)n+2

}
1

1 − (q/q)2

+ 2π2r2

∑
c,d

1
(cα + d)n+4

{
1

1 − (q/q)2
−

1 + (q/q)2

(1 − (q/q)2)2

}
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= 2πi
∑
c,d

{
cr2(n + 2)

(cα + d)n+3
− r1

(cα + d)n+2

}
1

1 − (q/q)2

− 4π2r2

∑
c,d

1
(cα + d)n+4

(q/q)2

(1 − (q/q)2)2
,

where the sum on c, d is as stated in Entry 11.10.1. This proves (11.10.3).
We next prove (11.10.6). From (11.10.2), since q = eπiτ ,

f(q) =
�2

e2πiα(eπi(τ−α) − 1)2
+

�1
eπiα(eπi(τ−α) − 1)

+ · · ·

=
�2

e2πiα(πi(τ − α) + 1
2 (πi)2(τ − α)2 + · · · )2

+
�1

eπiα(πi(τ − α) + · · · ) + · · ·

= − �2
e2πiαπ2(τ − α)2(1 + πi(τ − α) + · · · ) +

�1
eπiα(πi(τ − α))

+ · · ·

= − �2
e2πiαπ2(τ − α)2

− �2
e2πiαπi(τ − α)

+
�1

eπiαπi(τ − α)
+ · · · . (11.10.24)

If we now compare the far right side of (11.10.24) with the right side of
(11.10.2), we deduce (11.10.6). ��

Lemma 11.10.1. As in the general setting (11.10.2), put

1
B2(q)

=
�2

(q − q)2
+

�1
q − q

+ · · · , (11.10.25)

where q = eπiα, and where now α = 1 + i. Then

�1 = −
B′′(q)

(B′(q))3
and �2 =

1
(B′(q))2

. (11.10.26)

Proof. Since B(q) = 0,

1
B2(q)

=
1{

B′(q)(q − q) + 1
2B′′(q)(q − q)2 + · · ·

}2

=
{

1
B′(q)(q − q)

−
B′′(q)

2B′(q)2
+ · · ·

}2

=
1

B′(q)2(q − q)2
−

f ′′(q)
B′(q)3(q − q)

+ · · · . (11.10.27)

The values (11.10.26) now follow from (11.10.25) and (11.10.27). ��

The coefficients of 1/B2(q) are closely related to those for 1/R(q), which
were established in Hardy and Ramanujan’s paper [177, Theorem 3], [242,
p. 319].
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Entry 11.10.1 (pp. 97, 105, 114, 119, 123). Define the coefficients pn by

1
R(q2)

=:
∞∑

n=0

pnq2n, |q| < q0. (11.10.28)

Then, for n ≥ 0,
pn =

∑
(μ)

Tμ(n), (11.10.29)

where μ runs over all integers of the form (11.4.4), and where

T1(n) =
2

Q2(e−2π)
e2nπ, (11.10.30)

T2(n) =
2

Q2(e−2π)
(−1)n

24
enπ, (11.10.31)

and, for μ > 2,

Tμ(n) =
2

Q2(e−2π)
e2nπ/μ

μ4

∑
c,d

2 cos
(

(ac + bd)
2πn

μ
+ 8 tan−1 c

d

)
, (11.10.32)

where the sum is over all pairs (c, d), where (c, d) is a distinct solution to
μ = c2 + d2 and (a, b) is any solution to ad − bc = 1. Also, distinct solutions
(c, d) to μ = c2 + d2 give rise to distinct terms in the sum in (11.10.32).

We are now ready to state Ramanujan’s theorem on the coefficients of
1/B2(q).

Entry 11.10.2 (p. 119). Define the coefficients b′n by

1
B2(q2)

=:
∞∑

n=0

b′nq2n, |q| < q0.

Then,

b′n = 18
∑
(μe)

(
n +

3μe

2π

)
Tμe

(n), (11.10.33)

where the sum is over all even integers μ of the form (11.4.4), and where
Tμe

(n) is defined by (11.10.30), (11.10.31), and (11.10.32).

Proof. Throughout the proof we frequently and tacitly use the equalities

P (−e−π) = 2P (e−2π), Q(−e−π) = −4Q(e−2π), R(−e−π) = R(e−2π) = 0,

where the first equality follows from (11.7.4) and the equality B(−e−π) = 0;
the second comes from Entry 11.7.1 (iii) (or (11.8.16)); and the third arises
from Entry 11.7.1 (ii), the equality B(−e−π) = 0, and the fact that e−2π is a
zero of R(q) [246, p. 198].
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By (11.7.4) and (11.1.7),

B′(−e−π) =
d

dq

(
2P (q2) − P (q)

) ∣∣∣∣
q=−e−π

=
P 2(q2) − Q(q2)

3q
− P 2(q) − Q(q)

12q

∣∣∣∣
q=−e−π

=
2Q(e−2π)

3e−π
.

(11.10.34)

Next, by (11.10.34), (11.1.7), (11.1.8), and (11.8.10),

B′′(−e−π) =
1

12q2

{(
16qP (q2)

P 2(q2) − Q(q2)
12q2

− 8q
P (q2)Q(q2) − R(q2)

3q2

−2P (q)
P 2(q) − Q(q)

12q
+

P (q)Q(q) − R(q)
3q

)
q

− 4P 2(q2) + 4Q(q2) + P (q2) − Q(q)
}∣∣∣∣

q=−e−π

=
1

12q2

{
−4P (q2)Q(q2) +

P (q)Q(q)
2

+ 8Q(q2)
} ∣∣∣∣

q=−e−π

=
1

12e−2π

{
−8P (e−2π)Q(e−2π) + 8Q(e−2π)

}

=
2Q(e−2π)

3e−2π

(
1 − 3

π

)
. (11.10.35)

By the chain rule and (11.10.34) and (11.10.35), respectively, it follows that

B(q2)
dq

∣∣∣∣
q=ie−π/2

= 2qB′(q2)
∣∣
q=ie−π/2 =

4iQ(e−2π)
3e−π/2

and

d2B(q2)
dq2

∣∣∣∣
q=ie−π/2

= 2B′(q2) + 4q2B′′(q2)
∣∣
q=ie−π/2

=
4Q(e−2π)

3e−π
− 8e−πQ(e−2π)

3e−2π

(
1 − 3

π

)

=
4Q(e−2π)

3e−π

(
6
π
− 1
)

.

It follows from (11.10.26) that

�2 = − 9e−π

16Q2(e−2π)

and



308 11 Coefficients of Eisenstein Series

�1 = − 27ie−3π/2

64Q3(e−2π)
4Q(e−2π)

3e−π

(
6
π
− 1
)

= − 9ie−π/2

16Q2(e−2π)

(
6
π
− 1
)

.

Using the calculations above in (11.10.6), we further find that

r2 = − 9
16π2Q2(e−2π)

(11.10.36)

and

r1 = − i

πe−π

(
− 9e−π

16Q2(e−2π)

)
+

9i

16πQ2(e−2π)

(
6
π
− 1
)

=
27i

8π2Q2(e−2π)
.

(11.10.37)
We now apply Theorem 11.10.1 to 1/B2(q2). Note that n = 4 and that q

is defined by (11.8.13). Accordingly,

1
B2(q2)

= 2πi
∑
(c,d)

c even

{
6cr2

(c1+i
2 + d)7

− r1

(c1+i
2 + d)6

}
1

1 − (q/q)2

− 4π2r2

∑
(c,d)

c even

1
(c1+i

2 + d)8
(q/q)2

(1 − (q/q)2)2
.

We use the calculations (11.8.21) and (11.8.22) with c′ = c+d. Since c is even
and d is odd, then c′ is odd and μ = c′2 + d2 is even. Replacing c′ by c, we
find that

1
B2(q2)

= 2πi
∑
(c,d)

c2+d2 even

{
(1 + i)76(c − d)r2

(ci + d)7
− (1 + i)6r1

(ci + d)6

}
1

1 − (q/q)2

− 4π2r2

∑
(c,d)

c2+d2 even

(1 + i)8

(ci + d)8
(q/q)2

(1 − (q/q)2)2
.

Using (11.10.36) and (11.10.37), we deduce that

1
B2(q2)

= 2πi
∑
(c,d)

c2+d2 even

{
−8i

(ci + d)7

(
−6 · 9(c − d)(1 + i)

16π2Q2(e−2π)
− 27i(ci + d)

8π2Q2(e−2π)

)}

× 1
1 − (q/q)2

+
36

Q2(e−2π)

∑
(c,d)

c2+d2 even

1
(ci + d)8

(q/q)2

(1 − (q/q)2)2

=
16

πQ2(e−2π)

∑
(c,d)

c2+d2 even

1
(ci + d)7

(
−27(ci − d)

8

)
1

1 − (q/q)2
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+
36

Q2(e−2π)

∑
(c,d)

c2+d2 even

1
(ci + d)8

(q/q)2

(1 − (q/q)2)2

= − 54
πQ2(e−2π)

∑
(c,d)

c2+d2 even

(ci − d)(ci + d)
(ci + d)8

1
1 − (q/q)2

+
36

Q2(e−2π)

∑
(c,d)

c2+d2 even

1
(ci + d)8

(q/q)2

(1 − (q/q)2)2

=
54

πQ2(e−2π)

∑
(c,d)

c2+d2 even

μ

(ci + d)8
1

1 − (q/q)2

+
36

Q2(e−2π)

∑
(c,d)

c2+d2 even

1
(ci + d)8

(q/q)2

(1 − (q/q)2)2
.

Hence, as in the proof in [177, Theorem 3], [242, p. 319] or Entry 11.4.1, we
separate the terms for positive and negative c and observe that if c is replaced
by −c in q, then q is replaced by q. From above, we then deduce that

1
B2(q2)

=
54

πQ2(e−2π)

(
1
24

1
1 + eπq2

+
∑
(c,d)
μ>2

{
μ

(ci + d)8
1

1 − (q/q)2
+

μ

(−ci + d)8
1

1 − (q/q)2

})

+
36

Q2(e−2π)

(
1
24

−eπq2

1 + eπq2

+
∑
(c,d)
μ>2

{
1

(ci + d)8
(q/q)2

(1 − (q/q)2)2
+

1
(−ci + d)8

(q/q)2

(1 − (q/q)2)2

})

=
54

πQ2(e−2π)

(
1
24

∞∑
n=0

(−1)neπnq2n

+
∑
(c,d)
μ>2

{
μ

(ci + d)8

∞∑
n=0

q−2nq2n +
μ

(−ci + d)8

∞∑
n=0

q−2nq2n

})

+
36

Q2(e−2π)

(
1
24

∞∑
n=0

(−1)nneπnq2n
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+
∑
(c,d)
μ>2

{
1

(ci + d)8

∞∑
n=0

nq−2nq2n +
1

(−ci + d)8

∞∑
n=0

nq−2nq2n

})
.

Equating coefficients of q2n, n ≥ 0, on both sides and proceeding as in the
proof in [177, Theorem 3], [242, p. 319] or Entry 11.4.1, we find that

b′n =
54

πQ2(e−2π)

(
(−1)n

24
eπn +

∑
(μe)
μe>2

∑
(c,d)

μee
2πn/μe

μ4
e

× 2 cos
(

2πn

μe
(ac + bd) + 8 tan−1 c

d

))

+
36

Q2(e−2π)

(
(−1)n

24
neπn +

∑
(μe)
μe>2

∑
(c,d)

ne2πn/μe

μ4
e

× cos
(

2πn

μe
(ac + bd) + 8 tan−1 c

d

))

=
27
π

∑
(μe)

μeTμe
(n) + 18n

∑
(μe)

μeTμe
(n)

= 18
∑
(μe)

(
3μe

2π
+ n

)
Tμe

(n),

where the sums on μe and c, d are as given in the statement of Theorem
11.10.2. ��

Using Mathematica, we calculated b′n, 1 ≤ n ≤ 10, and the first two terms
in (11.10.33). As with bn, the accuracy is remarkable:

n b′n 18
(
(n + 3

π )T2(n) + (n + 15
π )T10(n)

)
1 −48 −48.001187
2 1, 680 1, 679.997897
3 −52, 032 −52, 031.997988
4 1, 508, 496 1, 508, 496.002778
5 −41, 952, 672 −41, 952, 671.998915
6 1, 133, 840, 832 1, 133, 840, 831.996875
7 −30, 010, 418, 304 −30, 010, 418, 304.008563
8 781, 761, 426, 576 781, 761, 426, 576.003783
9 −20, 110, 673, 188, 848 −20, 110, 673, 188, 847.986981
10 512, 123, 093, 263, 584 512, 123, 093, 263, 584.006307

Ramanujan’s theorem on the coefficients of 1/B2(q) is also closely related
to the power series expansion in Entry 11.5.1. We restate that theorem here
using the notation (11.10.30)–(11.10.32).
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Entry 11.10.3 (p. 102). Define the coefficients ηn by

P (q2)
R(q2)

=:
∞∑

n=0

ηnq2n, |q| < q0. (11.10.38)

Then, for n ≥ 0,

ηn =
3
π

∑
(μ)

μTμ(n), (11.10.39)

where μ runs over all integers of the form (11.4.4), and where Tμ(n) is defined
by (11.10.30)–(11.10.32).

Now observe from (11.10.29) and (11.10.38) that

∞∑
n=0

cnqn := q

(
1

R(q)

)′
+

P (q)
2R(q)

=
∞∑

n=0

npnqn +
1
2

∞∑
n=0

ηnqn, (11.10.40)

and so by (11.10.29) and (11.10.39),

cn =
∑

μ

(
n +

3μ

2π

)
Tμ(n) =: cn,e + cn,o, (11.10.41)

where cn,e and cn,o are the subseries over the even and odd values of μ, respec-
tively. Equality (11.10.41) should be compared with (11.10.33); in particular,
note that b′n = 18cn,e. Moreover, by (11.1.9),

q

(
1

R(q)

)′
+

P (q)
2R(q)

=
−P (q)R(q) + Q2(q)

2R2(q)
+

P (q)
2R(q)

=
1
2

(
Q(q)
R(q)

)2

=:
1
2

∞∑
n=0

dnqn. (11.10.42)

Defining dn,e and dn,o as we did above for cn,e and cn,o, we see by (11.10.33)
and (11.10.40)–(11.10.42) that

dn,e = 2cn,e, dn,o = 2cn,o, and b′n = 9dn,e.

Using the formula for the coefficients of Q(q)/R(q) given in Entry 11.4.1, we
can obtain a relation between these coefficients and the coefficients dn above.

Although we have stated Theorem 11.10.1 only for modular forms on Γ0(2)
with a single double pole on a fundamental region, there is an obvious analogue
for modular forms on the full modular group. In fact, as a check on our work,
we applied this analogue to Q2(q2)/R2(q2) to show that dn = 2cn, where cn

is given by (11.10.41). Also, Lehner’s theorem [201] can also now be obviously
extended for forms with double poles.
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11.11 A Calculation from [176]

On page 104 in his lost notebook [244], Ramanujan offers a calculation from
[176] to illustrate the accuracy of their formula for the coefficients of 1/R(q) by
taking only a small number of terms from their formula. Define the coefficients
pn, n ≥ 0, by

∞∑
n=0

pnqn =
1

R(q)
, |q| < 1.

Ramanujan records the first thirteen coefficients. These coefficients are also
recorded by Hardy and Ramanujan in their paper [176], [242, p. 317].

Entry 11.11.1 (p. 104).

p0 = 1
p1 = 504
p2 = 270648
p3 = 144912096
p4 = 77599626552
p5 = 41553943041744
p6 = 22251789971649504
p7 = 11915647845248387520
p8 = 6380729991419236488504
p9 = 3416827666558895485479576

p10 = 1829682703808504464920468048
p11 = 979779820147442370107345764512
p12 = 524663917940510191509934144603104

To calculate the coefficient p12, Ramanujan takes six terms from their
formula (11.10.29) of Entry 11.10.1; these terms are numerically equal to,
respectively,

524663917940510190119197271938395.329
+1390736872662028.140

+2680.418
+0.130
−0.014
−0.003

524663917940510191509934144603104.000

For more details, see Hardy and Ramanujan’s paper [176], [242, pp. 317, 320].
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Two Letters on Eisenstein Series Written from
Matlock House

12.1 Introduction

As we mentioned in Chapter 11, in their last joint paper, G.H. Hardy and
Ramanujan [177], [242, pp. 310–321] established the following remarkable for-
mula for the coefficients of 1/R(q).

Entry 12.1.1 (pp. 97, 105, 114, 119, 123). Let

1
R(q2)

=
∞∑

n=0

γnq2n, |q| < q0.

Then,

γn =
2
C

∑
(μ)

Wμ(n)
μ4 e2nπ/μ, (12.1.1)

where C is a constant defined in (11.5.3), μ runs over the integers of the
form (11.4.4), and Wμ(n) is defined in (11.5.5) and (11.5.7). Also, distinct
solutions (c, d) to μ = c2 + d2 give rise to distinct terms in the sum stated in
(12.1.1).

In another letter to Hardy from the English sanitarium Matlock House,
Ramanujan derives upper and lower bounds for the number of terms in the
formula (12.1.1) required to determine the value of each coefficient, that is, the
number of terms required to produce an approximation that has the actual
coefficient as the nearest integer. This letter was published with Ramanujan’s
“lost notebook” [23, pp. 97–101]. We will present an expanded version with
more details of Ramanujan’s argument in this chapter. In this letter, Ramanu-
jan writes [244, p. 97], “In one of my letters I wrote about the least number
of terms which will give the nearest integer to the actual coefficient in 1/g3

problem. It will be extremely difficult to prove such a result. But we can prove
this much as follows.” It is uncertain whether the letter to which Ramanujan

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 13, c© Springer Science+Business Media, LLC 2009
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refers still exists. However, pages 123–126 of [244] appear to be a portion of
this letter. The beginning of the letter is clearly missing, and the editors label
these pages sheets “from the LOST NOTEBOOK.”

12.2 A Lower Bound

Let

�(n) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

3
4
n(1 − ε)

log3/2 n

√√√√ ∏
p≡1 (mod 4)

(
1 − 1

p2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12.2.1)

where [x] denotes the greatest integer less than or equal to x, 0 ≤ ε ≤ 1, and
p runs over the primes congruent to 1 modulo 4.

Let
∑

n be the sum on the right-hand side of (12.1.1), and let
∑�(n)

n be the
sum of the first �(n) terms of

∑
n, where all of the summands corresponding

to one value of μ together count as one “term.”

Entry 12.2.1 (pp. 97–101). (A Lower Bound for the Number of Terms Re-
quired) As n tends to ∞, there are terms in

∑
n that are not in

∑�(n)
n and

are arbitrarily large.

Proof. Strictly speaking, this theorem does not imply that there is a large gap
between

∑�(n)
n and γn. Rather, it indicates that we cannot have confidence in∑�(n)

n as an approximation to γn because subsequent terms in the series
∑

n

are quite large.
We define c(m) to be the number of integers less than or equal to m

that can be represented as the sum of two coprime squares, i.e., that can be
represented in the form (11.4.4). We obtain an asymptotic formula for c(m).

We define r(m) to be the number of integers less than or equal to m that
can be represented as the sum of two squares. Such integers are of the form
[175, p. 299]

t = 2a
r∏

i=1

pai
i

s∏
j=i

q
2bj

j , (12.2.2)

where a is a nonnegative integer, pi is a prime of the form 4k+1, qj is a prime
of the form 4k + 3, and ai and bj are positive integers, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

From (11.4.4) and (12.2.2), we see that the integers that are counted in
r(m) but are not counted in c(m) are those that are divisible by 4 or by the
square of a prime of the form 4k + 3. Suppose we choose one of these integers
that is divisible by 4. Then it must be of the form
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4

⎛
⎝2a

r∏
i=1

pai
i

s∏
j=1

q
2bj

j

⎞
⎠ ,

and therefore, there are r(m/4) such integers less than or equal to m. Similarly,
there are r(m/9) integers divisible by 9 that are counted in r(m) but not in
c(m). Recalling that the integers counted in r(m) but not in c(m) are those
that are divisible by 4 or the square of a prime of the form 4k + 3, we use an
inclusion–exclusion argument to deduce that

c(m) = r(m) − r
(m

4

)
− r
(m

9

)
+ r
(m

36

)
− r
(m

49

)
− · · ·

=
∑
(g)

r

(
m

g

)
(−1)w(g), (12.2.3)

where w(g) is the number of prime factors of g, not including multiplicities,
and g runs over integers of the form

g := 22c
N∏

j=1

q
2cj

j , (12.2.4)

where c and cj are 0 or 1.
E. Landau [198, p. 66] and Ramanujan [56, pp. 60–66] both showed that

r(m) =
Bm√
log m

+ O

(
m

log3/2 m

)
, (12.2.5)

where
B =

1√√√√2
∏

p≡3 (mod 4)

(
1 − 1

p2

) . (12.2.6)

We use this formula for r(m) to obtain a similar formula for c(m).

Lemma 12.2.1. We have

c(m) =
3
2π

1√√√√ ∏
p≡1 (mod 4)

(
1 − 1

p2

) m√
log m

+ O

(
m

log3/2 m

)
.

Proof. Throughout the proof, g denotes an integer of the form (12.2.4). Note
that we can rewrite (12.2.3) as

c(m) =
∑
g≤m

r

(
m

g

)
(−1)w(g) , (12.2.7)
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because r
(

m
g

)
= 0 for g > m. We write (12.2.7) as two sums, namely,

c(m) =
∑

g<m2/3

r

(
m

g

)
(−1)w(g) +

∑
m2/3≤g≤m

r

(
m

g

)
(−1)w(g) . (12.2.8)

We estimate each sum separately. For m2/3 ≤ g ≤ m,

r

(
m

g

)
≤ r

(
m

m2/3

)
= r
(
m1/3

)
≤ m1/3 . (12.2.9)

Since g runs over integers of the form (12.2.4) and these are all squares, the
number of terms in the second sum in (12.2.8) is less than or equal to

√
m .

From this and (12.2.9), we see that the second sum in (12.2.8) is O(m5/6).
Thus from (12.2.8), it follows that

c(m) =
∑

g<m2/3

r

(
m

g

)
(−1)w(g) + O(m5/6).

Thus, by (12.2.5),

c(m) =
∑

g<m2/3

{
Bm/g√
log(m/g)

(−1)w(g) + O

(
m/g

log3/2(m/g)

)}
+ O(m5/6) .

(12.2.10)
We simplify the sum involving the O-term. Note that for g < m2/3,

∑
g<m2/3

m/g

log3/2(m/g)
=
∑

g<m2/3

m/g

log3/2 m(1 − log g/ log m)3/2

<
∑

g<m2/3

m/g

log3/2 m(1 − log m2/3/ log m)3/2

=
∑

g<m2/3

m/g

log3/2 m(1 − 2/3)3/2

= O

⎛
⎝ m

log3/2 m

∑
g<m2/3

1
g

⎞
⎠

= O

(
m

log3/2 m

∞∑
n=1

1
n2

)

= O

(
m

log3/2 m

)
,

where in the penultimate step we used the fact that g runs over a subset of
the squares. So by (12.2.10),
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c(m) =
∑

g<m2/3

{(
Bm/g√
log(m/g)

)
(−1)w(g)

}
+ O

(
m

log3/2 m

)
.

Now we express the sum above in terms of log m rather than log(m/g).
Using the fact that for g < m2/3,

1√
log(m/g)

=
1√

log m

1√
1 − log g/ log m

=
1√

log m

(
1 + O

(
log g

log m

))

=
1√

log m
+ O

(
log g

log3/2 m

)
,

we find that

c(m) =
∑

g<m2/3

{
Bm

g
(−1)ω(g)

(
1√

log m
+ O

(
log g

log3/2 m

))}
+ O

(
m

log3/2 m

)

=
∑

g<m2/3

Bm/g√
log m

(−1)ω(g) + O

⎛
⎝ m

log3/2 m

∑
g<m2/3

log g

g

⎞
⎠+ O

(
m

log3/2 m

)

=
∑

g<m2/3

Bm/g√
log m

(−1)ω(g) + O

(
m

log3/2 m

)
, (12.2.11)

where in the second sum of the penultimate line, we used the fact that g runs
over a subset of the squares.

We now show that (12.2.11) is true even if we remove the condition g <
m2/3 from the sum. Recall that g runs over squares, and so the sum in (12.2.11)
is absolutely convergent. Hence,

c(m) =
∑

g

{
Bm/g√

log m
(−1)w(g)

}
−
∑

g≥m2/3

{
Bm/g√

log m
(−1)w(g)

}

+ O

(
m

log3/2 m

)
.

However,∣∣∣∣∣
∑

g≥m2/3

{
Bm/g√

log m
(−1)w(g)

}∣∣∣∣∣ =
∣∣∣∣∣

Bm√
log m

∑
g≥m2/3

(−1)w(g)

g

∣∣∣∣∣
<

Bm√
log m

∑
g≥m2/3

1
g

<
Bm√
log m

∞∑
n≥m1/3

1
n2
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= O

(
m√
log m

1
m1/3

)

= O

(
m2/3√
log m

)

= O

(
m

log3/2 m

)
, (12.2.12)

and so

c(m) =
Bm√
log m

∑
(g)

(−1)w(g)

g
+ O

(
m

log3/2 m

)
. (12.2.13)

Recall that g runs over integers of the form (12.2.4), where the qj are primes
congruent to 3 (mod 4). Thus, using the Euler product representation for the
sum in (12.2.13), we find that

c(m) =
Bm√
log m

(
1 − 1

22

) ∏
p≡3 (mod 4)

(
1 − 1

p2

)
+ O

(
m

log3/2 m

)
.

Using the definition of B in (12.2.6) with the representation above, we deduce
that

c(m) =
1√√√√2

∏
p≡3 (mod 4)

(
1 − 1

p2

) m√
log m

(
3
4

) ∏
p≡3 (mod 4)

(
1 − 1

p2

)

+ O

(
m

log3/2 m

)

=
3

4
√

2

√√√√ ∏
p≡3 (mod 4)

(
1 − 1

p2

)
m√
log m

+ O

(
m

log3/2 m

)
.

Using the elementary fact

∏
p

(
1 − 1

p2

)
=

1
ζ(2)

=
6
π2 ,

we obtain our desired result, namely,

c(m) =
3

4
√

2

√√√√√√√√√

∏
p

(
1 − 1

p2

)

(
1 − 1

22

) ∏
p≡1 (mod 4)

(
1 − 1

p2

) m√
log m
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+ O

(
m

log3/2 m

)

=
3

4
√

2

√√√√√√√
6
π2

3
4

∏
p≡1 (mod 4)

(
1 − 1

p2

) m√
log m

+ O

(
m

log3/2 m

)

=
3

4
√

2

√
8
π2

1√ ∏
p≡1 (mod 4)

(
1 − 1

p2

) m√
log m

+ O

(
m

log3/2 m

)

=
3
2π

1√ ∏
p≡1 (mod 4)

(
1 − 1

p2

) m√
log m

+ O

(
m

log3/2 m

)
.

This concludes the proof of the lemma. ��

In the sum
∑�(n)

n , the index μ runs over the integers of the form (11.4.4),
that is, the integers in the sequence 1, 2, 5, 10, 13 . . . . We denote the integers
in this sequence by μ1, μ2, μ3, . . . . Then the value of μ corresponding to the
final term of the sum

∑�(n)
n is μ�(n). Thus,

c(μ�(n)) = �(n) . (12.2.14)

We now obtain an asymptotic formula for μ�(n) in terms of n. Then we use
this formula to obtain a lower bound for certain terms of

∑
n that are not in∑�(n)

n and in this way prove the theorem.
By (12.2.14), Lemma 12.2.1, and (12.2.1),

1 = lim
n→∞

�(n)
3
2π

1√ ∏
p≡1 (mod 4)

(
1 − 1

p2

) μ�(n)√
log μ�(n)

= lim
n→∞

⎡
⎢⎢⎢⎢⎣

3
4
n(1 − ε)

log3/2 n
√ ∏

p≡1 (mod 4)

(
1 − 1

p2

)

⎤
⎥⎥⎥⎥⎦

3
2π

1√ ∏
p≡1 (mod 4)

(
1 − 1

p2

) μ�(n)√
log μ�(n)
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= lim
n→∞

π(1 − ε)n/ log3/2 n

2μ�(n)/
√

log μ�(n)

. (12.2.15)

Note that if an, bn → ∞, then

lim
n→∞

an

bn
= 1

implies that

lim
n→∞

log an

log bn
= 1,

because

lim
n→∞

log an

log bn
= lim

n→∞

log an − log bn + log bn

log bn

= lim
n→∞

log(an/bn)
log bn

+ 1 = 1 .

Thus,

1 = lim
n→∞

log π(1 − ε) + log n − log(log n)3/2

log 2 + log μ�(n) − log(log μ�(n))1/2
= lim

n→∞

log n

log μ�(n)
. (12.2.16)

By (12.2.15) and (12.2.16),

1 = lim
n→∞

π(1 − ε)
2

n/(log n)3/2

μ�(n)/
√

log n
,

so that

μ�(n) ∼
π(1 − ε)

2
n

log n
. (12.2.17)

We let p̂n denote the smallest prime of the form 4k + 1 that is greater than
μ�(n). Note that

p̂n ∼ μ�(n) (12.2.18)

as n tends to ∞, by Dirichlet’s theorem for primes in arithmetic progressions.
Consider now the coefficients

γn, γn−1, . . . and γn−p̂n+1 .

Because p̂n is of the form (11.4.4), the series
∑

n,
∑

n−1, . . . , and
∑

n−ρ̂n+1

for these coefficients will contain the terms

2
C

2 cos
{

2(ac + bd)
nπ

p̂n
+ 8arctan

c

d

}
e2nπ/p̂n

p̂4
n

,
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2
C

2 cos
{

2(ac + bd)
(n − 1)π

p̂n
+ 8arctan

c

d

}
e2(n−1)π/p̂n

p̂4
n

,

. . . , (12.2.19)

and

2
C

2 cos
{

2(ac + bd)
(n − p̂n + 1)π

p̂4
n

+ 8arctan
c

d

}
e2(n−p̂n+1)π/p̂n

p̂n
, (12.2.20)

respectively. Recall that in our definition of
∑�(n)

n , we mentioned that all of
the summands corresponding to one value of μ together count as one term, and
recall that since p̂n is a prime of the form 4k+1, it has a unique representation
as a sum of two squares. Thus, indeed the terms are of the forms (12.2.19)
and (12.2.20). However, because

p̂n > μ�(n) > μ�(n−1) > · · · > μ�(n−p̂n+1) ,

the truncated series
∑�(n)

n
,
∑�(n−1)

n−1
, . . . ,

∑�(n−p̂n+1)

n−p̂n+1

does not contain these terms. For n sufficiently large, at least one of the
expressions

2 cos
{

2(ac + bd)
nπ

p̂n
+ 8arctan

c

d

}
,

2 cos
{

2(ac + bd)
(n − 1)π

p̂n
+ 8arctan

c

d

}
, . . . ,

and

2 cos
{

2(ac + bd)
(n − p̂n + 1)π

p̂n
+ 8arctan

c

d

}

will be greater than 1, and at least one will be less than −1. We choose two
such expressions and denote them by

2 cos
{

2(ac + bd)
(n − g)π

p̂n
+ 8arctan

c

d

}
(12.2.21)

and

2 cos
{

2(ac + bd)
(n − h)π

p̂n
+ 8arctan

c

d

}
, (12.2.22)

respectively.
The term arising from (12.2.21), by (12.2.17) and (12.2.18), is, as n → ∞,
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2
C

2 cos
{

2(ac + bd)
(n − g)π

p̂n
+ 8arctan

c

d

}
e2(n−g)π/p̂n

p̂4
n

>
2
C

e2(n−g)π/p̂n

p̂4
n

.

=
2
C

e(2nπ/p̂n)(1+o(1))

p̂4
n

=
2
C

e(4(log n)/(1−ε))(1+o(1))

{
π(1 − ε)

2
n

log n

}4

=
32

Cπ4(1 − ε)4
(
log4 n

)
n4ε/(1−ε)+o(1) ,

which tends to ∞ as n tends to ∞. Similarly, the term that includes the
expression in (12.2.22) tends to −∞ as n tends to ∞. This concludes the
proof of the theorem. ��

Actually, we have proved a bit more, namely, we have proved that there
are also terms in

∑
n that are not in

∑�(n)
n and are arbitrarily close to −∞.

12.3 An Upper Bound

We prove an upper bound for the number of terms in the series
∑

n required
to determine the value of the coefficient γn.

Let

u(n) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n(1 + ε)

log3/2 n

√√√√ ∏
p≡1 (mod 4)

(
1 − 1

p2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where 0 < ε < 1 and p runs over the primes congruent to 1 modulo 4. Let∑u(n)
n be the sum of the first u(n) terms of

∑
n, where all of the summands

corresponding to one value of μ together count as one “term.”

Entry 12.3.1 (pp. 97–101). (An Upper Bound for the Number of Terms
Required) The coefficient γn defined in (12.2.1) is the nearest integer to

∑u(n)
n

for n sufficiently large.

Proof. A typical term of the series
∑

n is of the form

2
C

{2 cos {· · · } + · · · + 2 cos {· · · }}
μ4 e2nπ/μ , (12.3.1)
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where the number of expressions “2 cos{· · · }” in the term is equal to the
number of distinct representations of μ as a sum of two coprime squares. The
number of (not necessarily distinct) representations of an integer m as a sum
of two squares is (e.g., see [223, p. 167])

4

( ∑
d|m

d≡1 (mod 4)

1 −
∑
d|m

d≡3 (mod 4)

1

)
.

Thus the number of expressions “2 cos{· · · }” in the term (12.3.1) is less than
4d(μ), where d(μ) denotes the number of positive divisors of μ, and the term
(12.3.1) itself is less than

16
C

d(μ)
μ4 e2nπ/μ (12.3.2)

in modulus.
The value of μ corresponding to the final term in the series

∑u(n)
n is μu(n).

We now estimate the sum of the terms of
∑

n that are not in
∑u(n)

n , that is,
the terms that correspond to values of μ greater than μu(n).

By the definition of c(m),

c(μu(m)) = u(m).

Using a line of proof that is virtually identical to that for Entry 12.2.1, we
find that

μu(m) ∼
2π(1 + ε)

3
n

log n
. (12.3.3)

By (12.3.2),

∣∣∣∑
n
−
∑u(n)

n

∣∣∣ <16
C

{
d(μu(n)+1)
μ4

u(n)+1

e2nπ/μu(n)+1

+
d(μu(n)+2)
μ4

u(n)+2

e2nπ/μu(n)+2 + · · ·
}

. (12.3.4)

By a result of Hardy and Ramanujan (e.g., see [223, p. 396]),

d(m) = mo(1)

as m tends to ∞, so that, by (12.3.3), the right-hand side of (12.3.4) is equal
to

O

⎛
⎝ 1

μ
4−o(1)
u(n)+1

e2nπ/μu(n)+1 +
1

μ
4−o(1)
u(n)+2

e2nπ/μu(n)+2 + · · ·

⎞
⎠

= O

(
e2nπ/μu(n)

(
1

(μu(n) + 1)4−o(1)
+

1
(μu(n) + 2)4−o(1)

+ · · ·
))
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= O

⎛
⎝e2nπ/μu(n)

1

μ
3−o(1)
u(n)

⎞
⎠

= O

(
e(3 log n/(1+ε))(1−o(1)) 1

(n/ log n)3−o(1)

)

= O

(
n(3−o(1))/(1+ε) 1

(n/ log n)3−o(1)

)

= O

(
log3 n

n3ε/(1+ε)−o(1)

)
, (12.3.5)

by (12.3.3). Thus, from (12.3.4) and (12.3.3),
∣∣∣∑

n
−
∑u(n)

n

∣∣∣ = o(1)

as n tends to ∞.
Since

∑
n is an integer and the expression

∣∣∣∑
n
−
∑u(n)

n

∣∣∣
is less than one-half for n sufficiently large, we see that γn (which equals

∑
n)

is the nearest integer to
∑u(n)

n for n sufficiently large, and thus we have proved
the result. ��

In his letter to Hardy [244, pp. 97–101] that includes Entries 12.2.1 and
12.3.1, Ramanujan claims that the terms in (12.2.19) can be written as [244,
p. 97]

2
C

2 cos
{

2nπ

p̂n
+ 8arctan θ

}
e2nπ/p̂n

p̂4
n

, (12.3.6)

2
C

2 cos
{

2(n − 1)π
p̂n

+ 8arctan θ

}
e2(n−1)π/p̂n

p̂4
n

, (12.3.7)

etc. In other words, he assumes that there exist integers a, b, c, and d such
that ad − bc = 1, c2 + d2 = p̂n, and ac + bd ≡ ±1 (mod p̂n). This assumption
does not seem to be correct.

For example, he asserts that the term with μ = 5 can be written as

2
C

2 cos
{

2nπ

5
+ 8 arctan 2

}
e2nπ/5

54 .

However, this is not true. By (11.5.7), we see that
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W5(n) = 2 cos
{

(ac + bd)
2nπ

5
+ 8 arctan

c

d

}
,

where a, b, c, d ∈ Z, ad − bc = 1, and c2 + d2 = 5. Note that

(ad − bc)2 + (ac + bd)2 = (a2 + b2)(c2 + d2).

The right-hand side is divisible by 5, since c2 + d2 = 5. Since ad − bc = 1,

(ac + bd)2 ≡ 4 (mod 5),

so that
ac + bd ≡ 2, 3 (mod 5).

Thus, it is puzzling why Ramanujan writes

2 cos
{

2nπ

5
+ 8 arctan 2

}

in his expression for W5(n), because this would imply

ac + bd ≡ ±1 (mod 5).
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Eisenstein Series and Modular Equations

13.1 Introduction

Recall that Ramanujan’s three Eisenstein series P (q), Q(q), and R(q) are
defined by

P (q) := 1 − 24
∞∑

k=1

kqk

1 − qk
, (13.1.1)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
, (13.1.2)

and

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
, (13.1.3)

where |q| < 1. On pages 44, 50, 51, and 53 in his lost notebook [244], Ramanu-
jan offers 12 formulas for Eisenstein series. All are connected with modular
equations of degree either 5 or 7.

In a wonderful paper [233] devoted to proving identities for Eisenstein se-
ries and incomplete elliptic integrals in Ramanujan’s lost notebook, S. Ragha-
van and S.S. Rangachari employ the theory of modular forms in establishing
proofs for all of Ramanujan’s identities for Eisenstein series. Most of the iden-
tities give representations for certain Eisenstein series in terms of quotients
of Dedekind eta functions, or, more precisely, Hauptmoduls. The very short
proofs by Raghavan and Rangachari depend on the finite dimensions of the
spaces of relevant modular forms, and therefore upon showing that a sufficient
number of coefficients in the expansions about q = 0 of both sides of the pro-
posed identities agree. Ramanujan evidently was unfamiliar with the theory
of modular forms and most likely did not discover the identities by comparing
coefficients.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 14, c© Springer Science+Business Media, LLC 2009
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The purpose of this chapter is therefore to construct proofs in the spirit of
Ramanujan’s work. In fact, our proofs depend only on theorems found in Ra-
manujan’s notebooks [243]. Admittedly, some of our algebraic manipulations
are rather laborious, and we resorted at times to Mathematica. It is therefore
clear to us that Ramanujan’s calculations, at least in some cases, were more
elegant than ours. We actually have devised two approaches. In Sections 13.3
and 13.4, we use the two methods, respectively, to prove Ramanujan’s quintic
identities. At the end of Section 13.3, we prove a first-order nonlinear “quin-
tic” differential equation of Ramanujan satisfied by P (q). In Section 13.5, we
use the second approach, which is more constructive, to prove Ramanujan’s
septic identities. The new parameterizations for moduli of degree 7 in Section
13.5 appear to be more useful than those given in [54, Section 19]. In Section
13.6, we briefly describe two new first-order nonlinear “septic” differential
equations for P (q).

The content of this chapter is taken from a paper by Berndt, H.H. Chan,
J. Sohn, and S.H. Son [67].

13.2 Preliminary Results

Define, after Ramanujan,

f(−q) := (q; q)∞ =: e−2πiz/24η(z), q = e2πiz, Im z > 0, (13.2.1)

where η denotes the Dedekind eta function. We shall use the well-known
transformation formula [54, p. 43, Entry 27(iii)]

η(−1/z) =
√

z/i η(z). (13.2.2)

The Eisenstein series Q(q) and R(q) are modular forms of weights 4 and
6, respectively. In particular, they obey the easily proved and well-known
transformation formulas [246, p. 136]

Q(e−2πi/z) = z4Q(e2πiz) (13.2.3)

and
R(e−2πi/z) = z6R(e2πiz). (13.2.4)

Our proofs below depend on modular equations. As usual, set

(a)k :=
Γ (a + k)

Γ (a)

and

2F1(a, b; c;x) :=
∞∑

k=0

(a)k(b)k

(c)kk!
xk, |x| < 1.

Suppose that, for some positive integer n,
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2F1( 1
2 , 1

2 ; 1; 1 − β)

2F1( 1
2 , 1

2 ; 1;β)
= n

2F1( 1
2 , 1

2 ; 1; 1 − α)

2F1( 1
2 , 1

2 ; 1;α)
. (13.2.5)

A modular equation of degree n is an equation involving α and β that is
induced by (13.2.5). We often say that β has degree n over α. Also set

z1 := 2F1( 1
2 , 1

2 ; 1;α) and zn := 2F1( 1
2 , 1

2 ; 1;β). (13.2.6)

The multiplier m is defined by

m :=
z1

zn
= 2F1( 1

2 , 1
2 ; 1; 1 − x)

2F1( 1
2 , 1

2 ; 1;x)
, (13.2.7)

where the last equality is a consequence of (13.2.6). When

q = exp
(
−π

2F1( 1
2 , 1

2 ; 1; 1 − x)

2F1( 1
2 , 1

2 ; 1;x)

)
(13.2.8)

and
z = 2F1( 1

2 , 1
2 ; 1;x), (13.2.9)

we have the “evaluations”

f(−q2) =
√

z 2−1/3 (x(1 − x)/q)1/12
, (13.2.10)

Q(q2) = z4(1 − x + x2), (13.2.11)

and
R(q2) = z6(1 + x)(1 − x/2)(1 − 2x). (13.2.12)

These are, respectively, Entries 12(iii), 13(i), and 13(ii) in Chapter 17 of Ra-
manujan’s second notebook [54, pp. 124, 126].

Next, we record some relations from the theory of modular equations of
degree 5. Set

m = 1 + 2p, 0 < p < 2, (13.2.13)

and
ρ = (m3 − 2m2 + 5m)1/2. (13.2.14)

Then [54, p. 284, equations (13.4), (13.5)]

(
α5

β

)1/8

=
5ρ + m2 + 5m

4m2
,

(
β5

α

)1/8

=
ρ − m − 1

4
, (13.2.15)

(
(1 − α)5

1 − β

)1/8

=
5ρ − m2 − 5m

4m2
, and

(
(1 − β)5

1 − α

)1/8

=
ρ + m + 1

4
.

(13.2.16)
Furthermore [54, p. 288, Entry 14(ii)]
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4α(1 − α) = p

(
2 − p

1 + 2p

)5

(13.2.17)

and

4β(1 − β) = p5

(
2 − p

1 + 2p

)
. (13.2.18)

Also, from Entry 14(iii) in Chapter 19 of Ramanujan’s second notebook [54,
p. 289],

1 − 2β = (1 + p − p2)
(

1 + p2

1 + 2p

)1/2

. (13.2.19)

We also need two modular equations of degree 5 from Entry 13(iv) of
Chapter 18 in Ramanujan’s second notebook [54, p. 281], namely,

m = 1 + 24/3

(
β5(1 − β)5

α(1 − α)

)1/24

(13.2.20)

and
5
m

= 1 + 24/3

(
α5(1 − α)5

β(1 − β)

)1/24

. (13.2.21)

For Section 13.5, we need several modular equations of degree 7 found
in Entries 19(i), (ii), (iii), and (vii) of Ramanujan’s second notebook [54,
pp. 314–315]. Thus, if β has degree 7 over α and m is the multiplier of degree
7,

(αβ)1/8 + {(1 − α)(1 − β)}1/8 = 1, (13.2.22)

m = −
1 − 4

(
β7(1 − β)7

α(1 − α)

)1/24

(αβ)1/8 − {(1 − α)(1 − β)}1/8
, (13.2.23)

7
m

=
1 − 4

(
α7(1 − α)7

β(1 − β)

)1/24

(αβ)1/8 − {(1 − α)(1 − β)}1/8
, (13.2.24)

(
(1 − β)7

1 − α

)1/8

−
(

β7

α

)1/8

= m
((

1 + (αβ)1/2 + {(1 − α)(1 − β)}1/2
)

/2
)1/2

, (13.2.25)
(

α7

β

)1/8

−
(

(1 − α)7

1 − β

)1/8

=
7
m

((
1 + (αβ)1/2 + {(1 − α)(1 − β)}1/2

)
/2
)1/2

, (13.2.26)
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and

m − 7
m

= 2
(
(αβ)1/8 − {(1 − α)(1 − β)}1/8

)

×
(
2 + (αβ)1/4 + {(1 − α)(1 − β)}1/4

)
. (13.2.27)

13.3 Quintic Identities: First Method

Entry 13.3.1 (p. 50). For Q(q) and f(−q) defined by (13.1.2) and (13.2.1),
respectively,

Q(q) =
f10(−q)
f2(−q5)

+ 250qf4(−q)f4(−q5) + 3125q2 f10(−q5)
f2(−q)

(13.3.1)

and

Q(q5) =
f10(−q)
f2(−q5)

+ 10qf4(−q)f4(−q5) + 5q2 f10(−q5)
f2(−q)

. (13.3.2)

Proof. It is slightly advantageous to first prove (13.3.2) with q replaced by
q2. To prove (13.3.2), we first write the right side of (13.3.2) as a function of
p, where p is defined by (13.2.13).

By (13.2.10),

q4 f10(−q10)
f2(−q2)

= q4 z5
52−10/3

(
β(1 − β)/q5

)5/6

z12−2/3 (α(1 − α)/q)1/6

= 2−8/3 z4
5

m

(
β5(1 − β)5

α(1 − α)

)1/6

, (13.3.3)

where β has degree 5 over α, z1 and z5 are defined by (13.2.6), and m is
the multiplier defined by (13.2.7). Using (13.2.15), (13.2.16), (13.2.14), and
(13.2.13) in (13.3.3), we find that

q4 f10(−q10)
f2(−q2)

= 2−8/3 z4
5

m

(
ρ2 − (m + 1)2

16

)4/3

=
z4
5(m − 1)4

28m
=

z4
5p4

24(1 + 2p)
. (13.3.4)

Similarly, from (13.2.10), (13.2.7), (13.2.17), (13.2.18), and (13.2.13),

f6(−q2)
q2f6(−q10)

= m3

(
α(1 − α)
β(1 − β)

)1/2
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= m3

(
2 − p

p(1 + 2p)

)2

=
(1 + 2p)(2 − p)2

p2
. (13.3.5)

Thus, from (13.3.4) and (13.3.5),

q4 f10(−q10)
f2(−q2)

(
f12(−q2)

q4f12(−q10)
+ 10

f6(−q2)
q2f6(−q10)

+ 5
)

=
z4
5p4

24(1 + 2p)

(
(1 + 2p)2(2 − p)4

p4
+ 10

(1 + 2p)(2 − p)2

p2
+ 5
)

=
z4
5

24(1 + 2p)
(16 + 32p − 8p5 + 4p6)

= z4
5

(
1 +

p5(−2 + p)
4(1 + 2p)

)

= z4
5(1 − β(1 − β))

= Q(q10),

where in the penultimate step we used (13.2.18), and in the last step we
utilized (13.2.11). This completes the proof of (13.3.2).

To prove (13.3.1), we first rewrite (13.3.2) in terms of the Dedekind eta
function, defined in (13.2.1). Accordingly,

Q(q5) =
η10(5z)
η2(z)

((
η(z)
η(5z)

)12

+ 10
(

η(z)
η(5z)

)6

+ 5

)
. (13.3.6)

We now transform (13.3.6) by means of (13.2.2) and (13.2.3) to deduce that

(5z)−4Q(e−2πi/(5z)) =
η10(−1/(5z))

(5z/i)5
(z/i)

η2(−1/z)

×

⎛
⎝
(

η(−1/z)√
z/i

√
5z/i

η(−1/(5z))

)12

+ 10

(
η(−1/z)√

z/i

√
5z/i

η(−1/(5z))

)6

+ 5

⎞
⎠ ,

or

Q(e−2πi/(5z))

=
η10(−1/(5z))

η2(−1/z)

(
55

(
η(−1/z)

η(−1/(5z))

)12

+ 250
(

η(−1/z)
η(−1/(5z))

)6

+ 1

)

= 55 η10(−1/z)
η2(−1/(5z))

+ 250η4(−1/(5z))η4(−1/z) +
η10(−1/(5z))

η2(−1/z)
.

If we set q = e−2πi/(5z) and use (13.2.1), the last equality takes the shape
(13.3.1), and so this completes the proof of (13.3.1). ��
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Entry 13.3.2 (p. 51). For f(−q) and R(q) defined by (13.2.1) and (13.1.3),
respectively,

R(q) =
(

f15(−q)
f3(−q5)

− 500qf9(−q)f3(−q5) − 15625q2f3(−q)f9(−q5)
)

×

√
1 + 22q

f6(−q5)
f6(−q)

+ 125q2
f12(−q5)
f12(−q)

(13.3.7)

and

R(q5) =
(

f15(−q)
f3(−q5)

+ 4qf9(−q)f3(−q5) − q2f3(−q)f9(−q5)
)

×

√
1 + 22q

f6(−q5)
f6(−q)

+ 125q2
f12(−q5)
f12(−q)

. (13.3.8)

Proof. Our procedure is similar to that of the previous entry. We establish
(13.3.8) first, but with q replaced by q2.

By (13.2.10), (13.2.7), (13.2.17), and (13.2.18),

f15(−q2)
f3(−q10)

=
z
15/2
1

16z
3/2
5

(
α5(1 − α)5

β(1 − β)

)1/4

=
z6
1m3/2

64

(
2 − p

1 + 2p

)6

. (13.3.9)

Hence, from (13.3.9), (13.3.5), (13.2.7), and (13.2.13),

F (q) :=
f15(−q2)
f3(−q10)

(
1 + 4q2 f6(−q10)

f6(−q2)
− q4 f12(−q10)

f12(−q2)

)

×

√
1 + 22q2

f6(−q10)
f6(−q2)

+ 125q4
f12(−q10)
f12(−q2)

=
z6
1m3/2

64

(
2 − p

1 + 2p

)6

×
(

1 + 4
p2

(1 + 2p)(2 − p)2
− p4

(1 + 2p)2(2 − p)4

)

×

√
1 + 22

p2

(1 + 2p)(2 − p)2
+ 125

p4

(1 + 2p)2(2 − p)4

=
z6
5

8m3/2

(
4 + 8p − 6p2 − 6p3 + 9p4 − 5p5 + p6

)
×
√

4 + 8p + 12p2 + 12p3 + 9p4 + 4p5 + p6

=
z6
5

8m3/2
(1 + p − p2)(4 + 4p − 6p2 + 4p3 − p4)

×
√

(1 + p2)(4 + 8p + 8p2 + 4p3 + p4). (13.3.10)

Using (13.2.19) and (13.2.13), we can write (13.3.10) in the form
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F (q) = z6
5(1 − 2β)

4 + 4p − 6p2 + 4p3 − p4

8(1 + 2p)

√
4 + 8p + 8p2 + 4p3 + p4

= z6
5(1 − 2β)

(4 + 4p − 6p2 + 4p3 − p4)(2 + 2p + p2)
8(1 + 2p)

= z6
5(1 − 2β)

8 + 16p + 2p5 − p6

8(1 + 2p)

= z6
5(1 − 2β)

(
1 +

p5(2 − p)
8(1 + 2p)

)

= z6
5(1 − 2β)

(
1 + 1

2β(1 − β)
)

= z6
5(1 − 2β)(1 − 1

2β)(1 + β)

= R(q10), (13.3.11)

where in the antepenultimate line we used (13.2.18), and in the last line we
used (13.2.12). Combining (13.3.10) and (13.3.11), we deduce (13.3.8), but
with q replaced by q2.

The proof of (13.3.7) is almost exactly like the proof of (13.3.1), but of
course, we use (13.2.4) instead of (13.2.3). ��

The next two results are algebraic combinations of the pairs of represen-
tations in Entries 13.3.1 and 13.3.2.

Entry 13.3.3 (p. 51). Let A = Q(q) and B = Q(q5). Then

√
A2 + 94AB + 625B2

= 12
√

5
(

f10(−q)
f2(−q5)

+ 26qf4(−q)f4(−q5) + 125q2 f10(−q5)
f2(−q)

)
. (13.3.12)

Proof. Set

C =
f5(−q)
f(−q5)

, D = qf4(−q)f4(−q5), and E = q
f5(−q5)
f(−q)

. (13.3.13)

Note that
CE = D. (13.3.14)

Equalities (13.3.1) and (13.3.2) now take the shapes

A = C2 + 250D + 3125E2 and B = C2 + 10D + 5E2, (13.3.15)

respectively, and the proposed equality (13.3.12) has the form
√

A2 + 94AB + 625B2 = 12
√

5
(
C2 + 26D + 125E2

)
. (13.3.16)

Substitute (13.3.15) into (13.3.16), square both sides, use (13.3.14), and with
just elementary algebra, (13.3.16) is then verified. ��
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Entry 13.3.4 (p. 51). Let A = R(q) and B = R(q5). Then√
5(A + 125B)2 − (126)2AB

= 252
(

f10(−q)
f2(−q5)

+ 62qf4(−q)f4(−q5) + 125q2 f10(−q5)
f2(−q)

)

×

√
f10(−q)
f2(−q5)

+ 22qf4(−q)f4(−q5) + 125q2
f10(−q5)
f2(−q)

. (13.3.17)

Proof. We employ the notation (13.3.13). Equalities (13.3.7) and (13.3.8)
then may be written as, respectively,

A =
(
C3 − 500CD − 56DE

)√
1 + 22E2/D + 125E4/D2 (13.3.18)

and

B =
(
C3 + 4CD − DE

)√
1 + 22E2/D + 125E4/D2, (13.3.19)

and the proposed equality (13.3.17) has the form√
5(A + 125B)2 − (126)2AB = 252(C2 + 62D + 125E2)

×
√

C2 + 22D + 125E2. (13.3.20)

Square (13.3.20), use (13.3.18), (13.3.19), and (13.3.14), and simplify to verify
the truth of (13.3.20). ��

Our next goal is to establish a differential equation satisfied by P (q), de-
fined by (13.1.1). We need two lemmas.

Lemma 13.3.1. Recall that Q(q) and R(q) are defined by (13.1.2) and (13.1.3),
respectively. Let

u := q1/4f(−q)f(−q5) and λ := q

(
f(−q5)
f(−q)

)6

. (13.3.21)

Then

Q(q) = u4

(
1
λ

+ 250 + 55λ

)
(13.3.22)

and

R(q) = u6

(
1
λ
− 500 − 56λ

)√
1
λ

+ 22 + 125λ. (13.3.23)

Proof. Identities (13.3.22) and (13.3.23) are obtained from (13.3.1) and
(13.3.7), respectively. For example, by (13.3.1) and (13.3.21),

Q(q) = qf4(−q)f4(−q5)
(

f6(−q)
qf6(−q5)

+ 250 + 3125q
f6(−q5)
f6(−q)

)

= u4

(
1
λ

+ 250 + 55λ

)
.

��



336 13 Eisenstein Series and Modular Equations

Lemma 13.3.2. Recall that f(−q) is defined by (13.2.1). Then

1 + 6
∞∑

k=1

kqk

1 − qk
− 30

∞∑
k=1

kq5k

1 − q5k

=

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f2(−q)f2(−q5)
.

Lemma 13.3.2 is part of Entry 4(i) in Chapter 21 of Ramanujan’s second
notebook, and a proof is given in [54, p. 463]. We give here a new short proof,
based on Lemma 13.3.1.

Proof. Using Ramanujan’s differential equations [240, equation 30], [242,
p. 142]

q
dQ

dq
=

PQ − R

3
and q

dR

dq
=

PR − Q2

2
, (13.3.24)

we deduce that
Q3 − R2 = 3qR

dQ

dq
− 2qQ

dR

dq
. (13.3.25)

From (13.3.22) and (13.3.23), we find that

Q3 − R2 = 1728
u12

λ2
, (13.3.26)

dQ

dq
= 4u3

(
1
λ

+ 250 + 55λ

)
du

dq
+ u4

(
− 1

λ2
+ 55

)
dλ

dq
, (13.3.27)

and

dR

dq
= 6u5

(
1
λ
− 500 − 56λ

)√
1
λ

+ 22 + 125λ
du

dq
(13.3.28)

− 3u6(1 − 152λ + 5250λ2 + 250000λ3 + 1953125λ4)

2λ3

√
1
λ

+ 22 + 125λ

dλ

dq
.

Using (13.3.22), (13.3.23), (13.3.27), and (13.3.28) to simplify the right-hand
side of (13.3.25), we deduce that

Q3 − R2 = 3qR
dQ

dq
− 2qQ

dR

dq
= 1728

u10

λ3

√
1
λ

+ 22 + 125λ
q
dλ

dq
.

Combining this last equation with (13.3.26) yields
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q
dλ

dq
= u2λ

√
1
λ

+ 22 + 125λ. (13.3.29)

On the other hand, by straightforward logarithmic differentiation,

q
dλ

dq
= λ

(
1 − 30

∞∑
k=1

kq5k

1 − q5k
+ 6

∞∑
k=1

kqk

1 − qk

)
. (13.3.30)

If we combine (13.3.29) and (13.3.30), we deduce Lemma 13.3.2. ��

Entry 13.3.5 (p. 44). Let P (q) be defined by (13.1.1). Then

P (q) =
f5(−q)
f(−q5)

(√
1 + 22λ + 125λ2 − 30F (λ)

)
(13.3.31)

and

P (q5) =
f5(−q)
f(−q5)

(√
1 + 22λ + 125λ2 − 6F (λ)

)
, (13.3.32)

where λ is defined in (13.3.21), and where F (λ) satisfies the nonlinear first-
order differential equation

1 +
25
2

λ +
5
2λ

F 2(λ) = F ′(λ)
√

1 + 22λ + 125λ2. (13.3.33)

Proof. Assume that F (λ) is defined by (13.3.31), so that (13.3.31) is trivially
true. By (13.1.1) and Lemma 13.3.2, we have

5P (q5) − P (q)
4

=
f5(−q)
f(−q5)

√
1 + 22λ + 125λ2, (13.3.34)

with λ defined by (13.3.21). If we substitute (13.3.31) into (13.3.34) and solve
for P (q5), we deduce (13.3.32). It remains to prove that F (λ) satisfies the
differential equation (13.3.33).

From (13.3.24), (13.3.22), (13.3.23), and (13.3.29), we find that, with the
prime ′ denoting differentiation with respect to q,

P (q) = 12q
u′

u
− 2

u2

√
λ

√
1 + 22λ + 125λ2. (13.3.35)

Differentiating (13.3.35) with the help of (13.3.29), we deduce that

q
dP

dq
= −u4 125λ2 − 1

λ
− 4

u2

√
λ

(
q
u′

u

)√
1 + 22λ + 125λ2 + 12q

(
q
u′

u

)′
.

(13.3.36)
Next, using another differential equation of Ramanujan [240, equation (30)],
[242, p. 142],

q
dP

dq
=

P 2 − Q

12
, (13.3.37)
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(13.3.22), (13.3.35), and (13.3.36), we conclude that

12q

(
q
u′

u

)′
− 12

(
q
u′

u

)2

= −3
4

u4

λ

(
1 + 125λ2 + 18λ

)
. (13.3.38)

We now identify Ramanujan’s function F (λ). Comparing (13.3.31) and
(13.3.35), we conclude that

F (λ) = −2
5
q
u′

u

√
λ

u2
+

1
10

√
1 + 22λ + 125λ2. (13.3.39)

Rewriting (13.3.39) in the form

F (λ)√
λ

− 1
10
√

λ

√
1 + 22λ + 125λ2 = −2

5
q
u′

u

1
u2

, (13.3.40)

and differentiating with respect to q, we deduce that

−1
2

u2

√
λ

√
1 + 22λ + 125λ2

λ
F (λ) +

1√
λ

q
dF (λ)

dq
− u2

20
125λ2 − 1

λ

= −2
5

{
q

(
q
u′

u

)′ 1
u2

− 2
u2

(
q
u′

u

)2
}

. (13.3.41)

Using (13.3.38) and (13.3.40), we may rewrite the right-hand side of (13.3.41)
and deduce that

− 1
2

u2

√
λ

√
1 + 22λ + 125λ2

λ
F (λ) +

1√
λ

q
dF (λ)

dq
− u2

20
125λ2 − 1

λ

= u2 1 + 18λ + 125λ2

40λ
+

5
2
u2 F 2(λ)

λ
+ u2 1 + 22λ + 125λ2

40λ

− u2 1
2λ

F (λ)
√

1 + 22λ + 125λ2. (13.3.42)

Simplifying (13.3.42) with the use of (13.3.29), we deduce Ramanujan’s dif-
ferential equation (13.3.33). ��

13.4 Quintic Identities: Second Method

The alternative method to proving Entries 13.3.1, 13.3.2, and 13.3.5 that
we present in this section is more constructive than that in Section 13.3, but
although no less elementary, is perhaps slightly more removed from procedures
that Ramanujan might have employed. On the other hand, the method here
is more amenable to proving further theorems of this sort, especially if one
does not know their formulations beforehand.
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We begin by introducing some simplifying notation and making some use-
ful preliminary calculations. Set

p1 :=
(

β5(1 − β)5

α(1 − α)

)1/24

, (13.4.1)

p2 :=
(

α5(1 − α)5

β(1 − β)

)1/24

, (13.4.2)

and

C :=

√
z5
5

16
√

z1
. (13.4.3)

Observe that, by (13.2.20) and (13.2.21), respectively,

p1 =
m − 1
24/3

(13.4.4)

and
p2 =

5 − m

24/3m
. (13.4.5)

It follows that

α(1 − α) = p1p
5
2 =

m − 1
24/3

(
5 − m

24/3m

)5

= − (m − 1)(m − 5)5

162m5 (13.4.6)

and

β(1 − β) = p5
1p2 =

(
m − 1
24/3

)5 5 − m

24/3m
= − (m − 1)5(m − 5)

162m
. (13.4.7)

We also note that, by (13.4.3),

z4
1

162m5 =
z4
1

162(z1/z5)5
=

z5
5

162z1

= C2 (13.4.8)

and
z4
5

162m
=

z4
5

162(z1/z5)
=

z5
5

162z1

= C2. (13.4.9)

Since, by (13.4.3),

C3 =

√
z15
5

163
√

z3
1

=
z6
5

163

1√
(z1/z3)3

=
z6
5

163m
√

m
,

we find that
z6
1

163m6 =
z6
1

163(z6
1/z6

5)
=

z6
5

163 = C3m
√

m. (13.4.10)
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We shall use (13.4.8)–(13.4.10) in our alternative proofs of Entries 13.3.1 and
13.3.2.

In view of (13.3.1), it is natural to introduce abbreviated notation for
certain quotients of eta functions. Our goal is to represent these quotients as
polynomials in the multiplier m. First, by (13.2.10), (13.4.3), (13.4.2), and
(13.4.5),

r1 : =
f5(−q2)
f(−q10)

=

√
z5
12−5/3(α(1 − α)/q)5/12

√
z52−1/3(β(1 − β)/q5)1/12

=

√
z5
5z3

1

24/3√z1z
3
5

(
α5(1 − α)5

β(1 − β)

)1/12

=
16C

24/3
m3p2

2 =
16C

24/3
m3

(
5 − m

24/3m

)2

= Cm(m − 5)2, (13.4.11)

and, by (13.2.10), (13.4.3), (13.4.1), and (13.4.4),

r2 : = q2 f5(−q10)
f(−q2)

= q2

√
z5
52−5/3(β(1 − β)/q5)5/12

√
z12−1/3(α(1 − α)/q)1/12

=

√
z5
5

24/3√z1

(
β5(1 − β)5

α(1 − α)

)1/12

=
16C

24/3
p2
1 =

16C

24/3

(
m − 1
24/3

)2

= C(m − 1)2. (13.4.12)

Hence, by (13.4.11) and (13.4.12),

r1r2 = q2f4(−q2)f4(−q10) = C2m(m − 5)2(m − 1)2. (13.4.13)

The following lemma will be very useful.

Lemma 13.4.1. Let

g(m) := C2

(
6∑

k=0

ckmk

)
.

If furthermore, we set, for some numbers x1, x2, and x3,

g(m) = x1r
2
1 + x2r1r2 + x3r

2
2,

then
x1 = c6, x2 = c5 + 20c6, and x3 = c0.
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Proof. Since, by (13.4.11)–(13.4.13),

x1r
2
1 + x2r1r2 + x3r

2
2

= C2
(
x3 + m(25x2 − 4x3) + m2(625x1 − 60x2 + 6x3)

+ m3(−500x1 + 46x2 − 4x3) + m4(150x1 − 12x2 + x3)

+ m5(−20x1 + x2) + m6x1

)
,

by matching the coefficients of mk, k = 0, . . . , 6, we find that

c0 = x3,

c1 = 25x2 − 4x3,

c2 = 625x1 − 60x2 + 6x3,

c3 = −500x1 + 46x2 − 4x3,

c4 = 150x1 − 12x2 + x3,

c5 = −20x1 + x2,

c6 = x1.

Therefore, if the system above is not overdetermined, then g(m) can be ex-
pressed as a linear combination of r2

1, r1r2, and r2
2. By solving the linear system

of equations

c0 = x3,

c5 = −20x1 + x2,

c6 = x1,

for x1, x2, and x3, and noting that c1, c2, c3, and c4 are then uniquely deter-
mined, we complete the proof. ��

We are now ready for our second proof of Entry 13.3.1.

Proof of Entry 13.3.1. By (13.2.11), (13.4.6), and (13.4.8),

Q(q2) = z4
1

(
1 − α(1 − α)

)

= z4
1

(
1 +

(m − 1)(m − 5)5

162m5

)

=
z4
1

162m5

(
162m5 + (m − 1)(m − 5)5

)
= C2(m6 + 230m5 + · · · + 55)
= r2

1 + 2 · 53r1r2 + 55r2
2,

upon the use of Lemma 13.4.1. Replacing q2 by q, we complete the proof of
(13.3.1).

By (13.2.11), (13.4.7), and (13.4.9),
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Q(q10) = z4
5

(
1 − β(1 − β)

)

= z4
5

(
1 +

(m − 1)5(m − 5)
162m

)

=
z4
5

162m

(
162m + (m − 1)5(m − 5)

)
= C2(m6 − 10m5 + · · · + 5)
= r2

1 + 10r1r2 + 5r2
2,

by an application of Lemma 13.4.1. Replacing q2 by q, we complete the proof
of (13.3.2). ��

For the proof of Entry 13.3.2, it will be convenient to define

D := m2 − 2m + 5,

E := m2 + 2m + 5,

F := m2 + 20m − 25,

and
G := m2 − 4m − 1.

Solving (13.4.6) and (13.4.7) and using the notation above, we deduce that

α =
1
2

+

√
D/mF

16m2 (13.4.14)

and

β =
1
2

+

√
D/mG

16
. (13.4.15)

(See also [54, p. 289, equation (14.2); p. 290, equation (14.4)].)
Using the notation above and Lemma 13.4.1, we may readily deduce the

following lemma.

Lemma 13.4.2. For D,E, F, and G defined above, for C defined by (13.4.3),
and for r1 and r2, defined in (13.4.11) and (13.4.12), respectively, we have

C2DE2 = r2
1 + 22r1r2 + 53r2

2,

C2F (m4 − 540m3 + 1350m2 − 14 · 53m + 54) = r2
1 − 4 · 53r1r2 − 56r2

2,

and

C2G(m4 − 12m3 + 54m2 − 108m + 1) = r2
1 + 4r1r2 − r2

2.
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Proof of Entry 13.3.2. By (13.2.12), (13.4.14), (13.4.10), and Lemma 13.4.2,

R(q2) = z6
1(1 + α)(1 − α/2)(1 − 2α)

= z6
1

√
D/mF

163m6 (
√

D/mF − 24m2)(
√

D/mF + 24m2)

=
z6
1

163m6

√
D/mF

(
(D/m)F 2 − 242m4

)
= (C3m

√
m)
√

D/mF
(
E
(
m4 − 540m3 + 1350m2

−14 · 53m + 54
)
/m
)

=
√

C2DE2
(
C2F (m4 − 540m3 + 1350m2 − 14 · 53m + 54)

)
=
√

r2
1 + 22r1r2 + 53r2

2 · (r2
1 − 4 · 53r1r2 − 56r2

2)

=
√

(r2
1 + 22r1r2 + 53r2

2)/r2
1 · r1(r2

1 − 4 · 53r1r2 − 56r2
2).

Replacing q2 by q, we complete the proof of (13.3.7).
By (13.2.12), (13.4.15), (13.4.10), and Lemma 13.4.2,

R(q10) = z6
5(1 + β)(1 − β/2)(1 − 2β)

= z6
5

√
D/mG

163 (
√

D/mG − 24)(
√

D/mG + 24)

=
z6
5

163

√
D/mG

(
(D/m)G2 − 242

)
= (C3m

√
m)
√

D/mG
(
E
(
m4 − 12m3

+54m2 − 108m + 1
)
/m
)

=
√

C2DE2
(
C2G(m4 − 12m3 + 54m2 − 108m + 1)

)
=
√

r2
1 + 22r1r2 + 53r2

2 · (r2
1 + 4r1r2 − r2

2)

=
√

(r2
1 + 22r1r2 + 53r2

2)/r2
1 · r1(r2

1 + 4r1r2 − r2
2).

Replacing q2 by q, we complete the proof of (13.3.8). ��

We now give an alternative proof of Entry 13.3.5. Recall that λ is defined
in (13.3.21). For convenience, define

H :=
√

1 + 22λ + 53λ2 (13.4.16)

and

J :=
f5(−q)
f(−q5)

. (13.4.17)

Then equation (13.3.1) can be written in the form
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Q(q) = J2(1 + 2 · 53λ + 55λ2), (13.4.18)

and (13.3.34) takes the shape

5P (q5) = P (q) + 4HJ. (13.4.19)

Furthermore, (13.3.29) may be written as

dλ

dq
=

λHJ

q
. (13.4.20)

By logarithmic differentiation, we deduce that

1
J

dJ

dq
= 5

∞∑
k=1

(−k)qk−1

1 − qk
−

∞∑
k=1

(−5k)q5k−1

1 − q5k

=
1

24q

(
5P (q) − 5P (q5)

)

=
1

24q

(
5P (q) −

(
P (q) + 4HJ

))

=
1
6q

(
P (q) − HJ

)
,

or

P (q) = JH +
6q

J

dJ

dq
= J

(
H +

6q

J2

dJ

dq

)
. (13.4.21)

Now define
F := − q

5J2

dJ

dq
.

Then, by (13.4.21),
P (q) = J (H − 30F) (13.4.22)

and
dJ

dq
= −5J2F

q
. (13.4.23)

Differentiating (13.4.16) with respect to λ, we find that

H ′(λ) =
22 + 2 · 53λ

2
√

1 + 22λ + 53λ2
=

11 + 53λ

H
.

Using this, (13.4.22), (13.4.23), and (13.4.20), we deduce that

q
dP

dq
= q

d

dq

(
J(H − 30F)

)

= q
dJ

dq
(H − 30F) + qJ

dλ

dq

d

dλ
(H − 30F)

= q

(
−5J2F

q

)
(H − 30F) + qJ

(
λHJ

q

)
(H ′(λ) − 30F′(λ))
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= J2(−5FH + 150F2 + 11λ + 53λ2 − 30λF′(λ)H). (13.4.24)

On the other hand, by (13.4.22) and (13.4.18),

1
12
(
P 2(q) − Q(q)

)
(13.4.25)

=
1
12
(
J2(H − 30F)2 − J2(1 + 2 · 53λ + 55λ2)

)

=
J2

12

((√
1 + 22λ + 53λ2

)2

− 60FH + 302F2 − (1 + 250λ + 55λ2)
)

= J2(−5FH + 75F2 − 19λ − 2 · 53λ2).

Equating (13.4.24) and (13.4.25) by (13.3.37), we arrive at

F′(λ)H = 1 +
25
2

λ +
5
2λ

F2,

which is (13.3.33).
By (13.4.19) and (13.4.22), we deduce that

P (q5) =
1
5
(
P (q) + 4HJ

)
=

J

5
(H − 30F + 4H) = J(H − 6F),

which completes the proof of (13.3.32).

13.5 Septic Identities

Entry 13.5.1 (p. 53). For |q| < 1,

Q(q) =
(

f7(−q)
f(−q7)

+ 5 · 72qf3(−q)f3(−q7) + 74q2 f7(−q7)
f(−q)

)
(13.5.1)

×
(

f7(−q)
f(−q7)

+ 13qf3(−q)f3(−q7) + 49q2 f7(−q7)
f(−q)

)1/3

and

Q(q7) =
(

f7(−q)
f(−q7)

+ 5qf3(−q)f3(−q7) + q2 f7(−q7)
f(−q)

)
(13.5.2)

×
(

f7(−q)
f(−q7)

+ 13qf3(−q)f3(−q7) + 49q2 f7(−q7)
f(−q)

)1/3

.

We shall prove these identities with q replaced by q2.
For convenience, define

C :=
√

z1z7

4
, (13.5.3)
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p1 := 4
(

β7(1 − β)7

α(1 − α)

)1/24

, (13.5.4)

and

p2 := 4
(

α7(1 − α)7

β(1 − β)

)1/24

. (13.5.5)

By (13.2.10), (13.2.7), and the definitions above,

r1 :=
f7(−q2)
f(−q14)

=

√
z7
12−7/3

(
α(1 − α)/q

)7/12

√
z72−1/3

(
β(1 − β)/q7

)1/12

=

√
z3
1z3

7z2
1

4z2
7

(
α7(1 − α)7

β(1 − β)

)1/12

=

√
z3
1z3

7

4
m2
(p2

4

)2

= C3m2p2
2. (13.5.6)

Furthermore,

p1p2 = 16
(
αβ(1 − α)(1 − β)

)1/4
, (13.5.7)

r2 := q2f3(−q2)f3(−q14) = C3p1p2, (13.5.8)

and

r3 := q4 f7(−q14)
f(−q2)

= C3 p2
1

m2 . (13.5.9)

Thus,

r1 + 5 · 72r2 + 74r3 = C3

(
m2p2

2 + 5 · 72p1p2 +
74p2

1

m2

)
(13.5.10)

and

r1 + 13r2 + 49r3 = C3

(
m2p2

2 + 13p1p2 +
49p2

1

m2

)
. (13.5.11)

Now define
T := (αβ)1/8 − (1 − α)1/8(1 − β)1/8. (13.5.12)

Then, by (13.2.23) and (13.2.24),

− T =
1 − p1

m
(13.5.13)

and
7T = (1 − p2)m. (13.5.14)

Eliminating T in (13.5.13) and (13.5.14), we deduce that
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mp2 +
7p1

m
= m +

7
m

. (13.5.15)

By (13.2.22) and (13.5.12),

(αβ)1/8 =
1 + T

2
(13.5.16)

and
(1 − α)1/8(1 − β)1/8 =

1 − T

2
. (13.5.17)

Thus, by (13.5.7),

p1p2 = 16
(
(αβ)1/8(1 − α)1/8(1 − β)1/8

)2 = (1 − T 2)2. (13.5.18)

By (13.2.27), (13.5.12), (13.5.16), and (13.5.17), we deduce that

m − 7
m

= 2T

(
2 +
(

1 + T

2

)2

+
(

1 − T

2

)2
)

.

Rewriting this, we have the following lemma.

Lemma 13.5.1. For the multiplier m, and T defined in (13.5.12),

m − 7
m

= 5T + T 3. (13.5.19)

Applying Lemma 13.5.1 repeatedly, one can derive the following expres-
sions.

Lemma 13.5.2. If m denotes the multiplier and T is defined in (13.5.12),
then

m2 = 7 + m(5T + T 3),
m3 = (35T + 7T 3) + m(7 + 25T 2 + 10T 4 + T 6),
m4 = (49 + 175T 2 + 70T 4 + 7T 6)

+m(70T + 139T 3 + 75T 5 + 15T 7 + T 9),
1
m

= −1
7
(T 3 + 5T ) +

1
7
m,

1
m2 =

1
49

(7 + 25T 2 + 10T 4 + T 6) +
1
49

m(−5T − T 3).

Lemma 13.5.3. Let m and T be as in the previous two lemmas, and let p1

and p2 be defined by (13.5.4) and (13.5.5), respectively. Then

m2p2
2 + 13p1p2 +

49p2
1

m2 = (3 + T 2)3. (13.5.20)
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Proof. By (13.5.15), (13.5.19), and (13.5.18),

m2p2
2 + 13p1p2 +

49p2
1

m2 =
(

mp2 +
7p1

m

)2

− p1p2

=
(

m +
7
m

)2

− p1p2

=
(

m − 7
m

)2

+ 28 − p1p2

= (T 3 + 5T )2 + 28 − (1 − T 2)2

= (3 + T 2)3,

which completes the proof. ��

By Lemma 13.5.3 and (13.5.11), we find that

(r1+13r2+49r3)1/3 = C

(
m2p2

2 + 13p1p2 +
49p2

1

m2

)1/3

= C(3+T 2). (13.5.21)

By (13.5.14),
mp2 = m − 7T. (13.5.22)

By Lemma 13.5.3, (13.5.22), and (13.5.18),

49p2
1

m2 = (3 + T 2)3 − (m − 7T )2 − 13(1 − T 2)2. (13.5.23)

With the help of Lemma 13.5.2, we can now express each of r1, r2, and r3

in the form
f1(T ) + mf2(T ).

Lemma 13.5.4. Let r1, r2, and r3 be defined by (13.5.6), (13.5.8), and
(13.5.9), respectively, and let m and T be as in the three previous lemmas.
Then

r1 = C3
(
(49T 2 + 7) + m(T 3 − 9T )

)
,

r2 = C3
(
(T 2 − 1)2

)
,

r3 =
C3

49
(
(7 + 4T 2 − 4T 4 + T 6) + m(9T − T 3)

)
.

Proof. Use (13.5.6) and (13.5.22) to deduce the formula for r1; use (13.5.8)
and (13.5.18) to prove the formula for r2; and use (13.5.9) and (13.5.23) for
the formula for r3. ��

Lemma 13.5.5. For the multiplier m, and T defined in (13.5.12),

α =
1

16m
(1 + T )(21 + 8m − 21T + 7T 2 − 7T 3) (13.5.24)
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and
β =

1
16

(1 + T )(8 − 3m + 3mT − mT 2 + mT 3). (13.5.25)

Proof. By (13.5.16) and (13.5.17), we deduce that

(
(1 − β)7

1 − α

)1/8

=
1 − β

(1 − α)1/8(1 − β)1/8
=

1 − β

(1 − T )/2
,

(
β7

α

)1/8

=
β

(αβ)1/8
=

β

(1 + T )/2
,

(
α7

β

)1/8

=
α

(αβ)1/8
=

α

(1 + T )/2
,

and

(
(1 − α)7

1 − β

)1/8

=
1 − α

(1 − α)1/8(1 − β)1/8
=

1 − α

(1 − T )/2
.

Using these identities, (13.5.16), and (13.5.17) in (13.2.26) and (13.2.25),
and then solving the linear equations for α and β, we obtain (13.5.24) and
(13.5.25). ��

Lemma 13.5.6. Let

g(T ) := C3

(
3∑

k=0

c2kT 2k + m

1∑
k=0

d2k+1T
2k+1

)
.

If
g(T ) = x1r1 + x2r2 + x3r3,

for some complex numbers x1, x2, and x3, then

x1 = d3 + c6, x2 = c4 + 4c6, and x3 = 49c6.

Proof. Since

(x1r1 + x2r2 + x3r3)/C3

=
(

7x1 + x2 +
1
7
x3

)
+
(

49x1 − 2x2 +
4
49

x3

)
T 2

+
(

x2 −
4
49

x3

)
T 4 +

1
49

x3T
6

+ m

{(
−9x1 +

9
49

x3

)
T +

(
x1 −

1
49

x3

)
T 3

}
,

by Lemma 13.5.4, we deduce the equalities
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c4 = x2 −
4
49

x3,

c6 =
1
49

x3,

d3 = x1 −
1
49

x3.

Thus, solving the linear system above for x1, x2, and x3, we complete the
proof. ��

We are now ready to prove Entry 13.5.1.

Proof of (13.5.1). By (13.2.11), (13.5.3), (13.5.24), and Lemma 13.5.2,

Q(q2) = z4
1(1 − α + α2)

=
(√

z1z7

4

)4

(44m2)(1 − α + α2)

= C4(3 + T 2)(147 + 64m2 + 112mT − 245T 2 − 112mT 3

+ 49T 4 + 49T 6)

= C(3 + T 2) · C3
(
147 + 64

(
7 + m(5T + T 3)

)
+ 112mT

− 245T 2 − 112mT 3 + 49T 4 + 49T 6
)

= C(3 + T 2) · C3
(
595 − 245T 2 + 49T 4 + 49T 6

+ m(432T − 48T 3)
)
.

Thus, applying Lemma 13.5.6, we find that x1 = 1, x2 = 5 · 72, and x3 = 74.
Since, by Lemma 13.5.4,

r1 + 5 · 72r2 + 74r3 = C3
(
595 − 245T 2 + 49T 4 + 49T 6 + m(432T − 48T 3)

)
,

we deduce that

Q(q2) = C(3 + T 2) · (r1 + 5 · 72r2 + 74r3)
= (r1 + 13r2 + 49r3)1/3(r1 + 5 · 72r2 + 74r3),

by (13.5.21). Thus, replacing q2 by q, we complete the proof of (13.5.1). ��

Proof of (13.5.2). By (13.2.11), (13.5.3), (13.5.25), and Lemma 13.5.2,

Q(q14) = z4
7(1 − β + β2)

=
(√

z1z7

4

)4 44

m2 (1 − β + β2)

= C4(3 + T 2)
( 64

m2 +
16
m

(−T + T 3) + 3 − 5T 2 + T 4 + T 6
)

= C4(3 + T 2)
(
64
( 1
49

(7 + 25T 2 + 10T 4 + T 6)
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+
1
49

m(−5T − T 3)
)

+ 16
(
−1

7
(T 3 + 5T ) +

1
7
m
)
(−T + T 3)

+ 3 − 5T 2 + T 4 + T 6
)

= C(3 + T 2) · C3

49
(
595 + 1915T 2 + 241T 4 + T 6

+ m(−432T + 48T 3)
)
.

Thus, by Lemma 13.5.6, x1 = 1, x2 = 5, and x3 = 1.
Since, by Lemma 13.5.4,

r1 + 5r2 + r3 =
C3

49
(
595 + 1915T 2 + 241T 4 + T 6 + m(−432T + 48T 3)

)
,

we deduce that

Q(q14) = C(3 + T 2) · (r1 + 5r2 + r3)
= (r1 + 13r2 + 49r3)1/3(r1 + 5r2 + r3),

by (13.5.21).
Thus, upon replacing q2 by q, we complete the proof of (13.5.2). ��

Entry 13.5.2 (p. 53). For |q| < 1,

R(q) =
(

f7(−q)
f(−q7)

− 72(5 + 2
√

7)qf3(−q)f3(−q7) − 73(21 + 8
√

7)q2 f7(−q7)
f(−q)

)

×
(

f7(−q)
f(−q7)

− 72(5 − 2
√

7)qf3(−q)f3(−q7) − 73(21 − 8
√

7)q2 f7(−q7)
f(−q)

)

(13.5.26)

and

R(q7) =
(

f7(−q)
f(−q7)

+ (7 + 2
√

7)qf3(−q)f3(−q7) + (21 + 8
√

7)q2 f7(−q7)
f(−q)

)

×
(

f7(−q)
f(−q7)

+ (7 − 2
√

7)qf3(−q)f3(−q7) + (21 − 8
√

7)q2 f7(−q7)
f(−q)

)
.

(13.5.27)

We shall prove the identities with q replaced by q2.
By straightforward calculations, we deduce the following lemma.

Lemma 13.5.7. If

C6

(
6∑

k=0

c2kT 2k + m

4∑
k=0

d2k+1T
2k+1

)

= (r1 + x2r2 + x3r3)(r1 + y2r2 + y3r3),
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for some real numbers x2, x3, y2, and y3, then

c8 = x3 + y3 + x2y2 −
6
72 (x2y3 + x3y2) +

24
74 x3y3,

c10 =
1
72 (x2y3 + x3y2) −

8
74 x3y3,

c12 =
1
74 x3y3,

d1 = −126 − 9(x2 + y2) +
9
72 (x2y3 + x3y2) +

18
73 x3y3.

Proof of (13.5.26). By (13.2.12), (13.5.3), (13.5.24), and Lemma 13.5.2,

1
C6 R(q2) =

z6
1

C6 (1 + α)(1 − α/2)(1 − 2α)

=
(√

z1z7

4C

)6

m346(1 + α)(1 − α/2)(1 − 2α)

= −75411 − 95130T 2 − 1841T 4 + 3780T 6 − 1029T 8 − 2058T 10

− 343T 12 + m(−82152T − 77344T 3 − 16816T 5 − 160T 7 + 344T 9).

If we use Lemma 13.5.7 to find real solutions (x2, x3, y2, y3) satisfying
x2 ≤ y2, we find that

x2 = −72(5 + 2
√

7), x3 = −73(21 + 8
√

7),

y2 = −72(5 − 2
√

7), y3 = −73(21 − 8
√

7).

By Lemmas 13.5.2 and 13.5.4,

1
C6

(
r1 − 72(5 + 2

√
7)r2 − 73(21 + 8

√
7)r3

)
×
(
r1 − 72(5 − 2

√
7)r2 − 73(21 − 8

√
7)r3

)
= −75411 − 95130T 2 − 1841T 4 + 3780T 6 − 1029T 8 − 2058T 10

− 343T 12 + m(−82152T − 77344T 3 − 16816T 5 − 160T 7 + 344T 9)

=
1

C6 R(q2).

Thus we complete the proof of (13.5.26) after replacing q2 by q. ��

Proof of (13.5.27). By (13.2.12), (13.5.3), (13.5.25), and Lemma 13.5.2,

1
C6 R(q14) =

z6
7

C6 (1 + β)(1 − β/2)(1 − 2β)

=
(√

z1z7

4C

)6 46

m3 (1 + β)(1 − β/2)(1 − 2β)
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= 75411 + 505890T 2 + 470713T 4 + 157644T 6 + 18645T 8 + 498T 10

− T 12 + m(−82152T − 77344T 3 − 16816T 5 − 160T 7 + 344T 9).

If we use Lemma 13.5.7 to find real solutions (x2, x3, y2, y3) satisfying
x2 ≥ y2, we find that

x2 = 7 + 2
√

7, x3 = 21 + 8
√

7,

y2 = 7 − 2
√

7, y3 = 21 − 8
√

7.

By Lemmas 13.5.2 and 13.5.4,

1
C6

(
r1 + (7 + 2

√
7)r2 + (21 + 8

√
7)r3

)
×
(
r1 + (7 − 2

√
7)r2 + (21 − 8

√
7)r3

)
= 75411 + 505890T 2 + 470713T 4 + 157644T 6 + 18645T 8 + 498T 10

− T 12 + m(−82152T − 77344T 3 − 16816T 5 − 160T 7 + 344T 9)

=
1

C6 R(q14).

Thus we complete the proof of (13.5.27) after replacing q2 by q. ��

As we indicated at the close of Section 13.1, the proofs presented here
depend only on theorems recorded by Ramanujan in his notebooks [243] and
lost notebook [244]. S. Cooper and P.C. Toh [142] have also found proofs of
all of Ramanujan’s results in this chapter, and they too have employed only
ideas that Ramanujan would have known. Different proofs of Ramanujan’s
identities for Eisenstein series, depending on the theory of elliptic functions,
have been constructed by Z.-G. Liu [206], [207], [209], [211].

13.6 Septic Differential Equations

Concluding this chapter, we offer two new septic differential equations for
P (q), defined in (13.1.1). Both involve variations of the same variable, but
one is connected with the beautiful identities in Entry 13.5.1, while the other
is connected with an emerging alternative septic theory of elliptic functions,
initially begun in a paper by Chan and Y.L. Ong [112].

Theorem 13.6.1. For |q| < 1,

P (q) =
(

f7(−q)
f(−q7)

)2/3 (
(1 + 13λ + 49λ2)2/3 − 28F (λ)

)
(13.6.1)

and
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P (q7) =
(

f7(−q)
f(−q7)

)2/3 (
(1 + 13λ + 49λ2)2/3 − 4F (λ)

)
, (13.6.2)

where

λ = q
f4(−q7)
f4(−q)

,

and where F (λ) satisfies the nonlinear first-order differential equation

1 +
28
3

λ +
7F 2(λ)

3λ
3
√

1 + 13λ + 49λ2
= F ′(λ) 3

√
1 + 13λ + 49λ2. (13.6.3)

Connections with the septic theory of elliptic functions are made manifest
in the next theorem.

Theorem 13.6.2. Recall that P (q) is defined in (13.1.1). Let

z =
∞∑

m,n=−∞
qm2+mn+2n2

and define x by
1 − x

x
=

1
7q

(
f(−q)
f(−q7)

)4

. (13.6.4)

Then

P (q) = z2(1 + 12F1(x)) and P (q7) = z2(1 + 12
7 F1(x)),

where F1(x) satisfies the differential equation

dF1(x)
dx

x(1 − x) + F 2
1 (x) +

2
3
F1(x)

x2 + 13x

7 − x + x2
+

7
9

x(3 + x)
7 − x + x2

= 0. (13.6.5)

The differential equation of Theorem 13.6.1 was discovered by Raghavan
and Rangachari [233] and can be deduced from (13.6.5) by setting

F1(x) = −7
3
F (λ)

(
3
√

1 + 13λ + 49λ2
)−2

, (13.6.6)

where λ is given in Theorem 13.6.1. Proofs of Theorem 13.6.1, Theorem 13.6.2,
and the assertion immediately above can be found in the paper by Berndt,
Chan, Sohn, and Son [67].
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Series Representable in Terms of Eisenstein
Series

14.1 Introduction

In his famous paper [240], [242, pp. 136–162], Ramanujan shows, among a
multitude of beautiful theorems and conjectures, that various classes of infinite
series can be represented as polynomials in the Eisenstein series P , Q, and R.
In his lost notebook [244, pp. 188, 369], Ramanujan claims that two further
classes of infinite series also can be represented in terms of P , Q, and R. Our
task in this chapter is to establish these claims.

On page 188 of his lost notebook, Ramanujan examines the series

T2k := T2k(q) := 1+
∞∑

n=1

(−1)n
{

(6n − 1)2kqn(3n−1)/2 + (6n + 1)2kqn(3n+1)/2
}

,

(14.1.1)
where |q| < 1. Note that the exponents n(3n±1)/2 are the generalized pentag-
onal numbers. Ramanujan records formulas for T2k, k = 1, 2, . . . , 6, in terms
of the Eisenstein series

P (q) := 1 − 24
∞∑

k=1

kqk

1 − qk
, (14.1.2)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
, (14.1.3)

and

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
, (14.1.4)

where |q| < 1. Ramanujan’s formulations of these formulas are cryptic. The
first is given by Ramanujan in the form

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 15, c© Springer Science+Business Media, LLC 2009
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1 − 52q − 72q2 + · · ·
1 − q − q2 + · · · = P.

In succeeding formulas, only the first two terms of the numerator are given,
and in two instances the denominator is replaced by a dash —. At the bottom
of the page, he gives the first five terms of a general formula for T2k. Details
and proofs for all of Ramanujan’s claims about T2k(q) are given in Section
14.2

On page 369 of his lost notebook [244], Ramanujan briefly considers two
classes of infinite series. One of the classes is considered in more detail on
page 188, as described above. Ramanujan briefly considered the second class
in Entry 35(i) of Chapter 16 in his second notebook [243], [54, pp. 61–62],
where a recurrence relation is given in terms of members of yet a third class
of infinite series. The approach indicated by Ramanujan on page 369 of his
lost notebook, however, is neater and more direct, with the aforementioned
third class of series not arising. In this chapter we also prove the claims about
this second class of series, namely, the series Un(q), which we now define. For
each nonnegative integer n,

Un(q) :=
1

(q; q)3∞

∞∑
j=1

(−1)j−1(2j − 1)n+1qj(j−1)/2 =:
Fn(q)
(q; q)3∞

. (14.1.5)

In Section 14.3, we establish Ramanujan’s claims about Un(q). Just as the
identities for T2k(q) can be regarded as generalizations of Euler’s pentagonal
number theorem, the identities for U2k(q) can be considered as generalizations
of Jacobi’s identity [54, p. 39, Entry 24(ii)]

(q; q)3∞ = 1
2

∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/2. (14.1.6)

14.2 The Series T2k(q)

In this section, we prove each of the seven formulas on page 188 and also
note an interesting corollary. Keys to our proofs are the pentagonal number
theorem [54, p. 36, Entry 22(iii)]

(q; q)∞ = 1 +
∞∑

n=1

(−1)n
{

qn(3n−1)/2 + qn(3n+1)/2
}

, (14.2.1)

where |q| < 1, and Ramanujan’s famous differential equations [240], [242,
p. 142]

q
dP

dq
=

P 2 − Q

12
, q

dQ

dq
=

PQ − R

3
, and q

dR

dq
=

PR − Q2

2
.

(14.2.2)
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We now state Ramanujan’s six formulas for T2k followed by a corollary and
his general formula. Another proof of Entry 14.2.1 can be found in Z.-G. Liu’s
paper [208, pp. 9–12].

Entry 14.2.1 (p. 188). If T2k is defined by (14.1.1) and P , Q, and R are
defined by (14.1.2)–(14.1.4), then

T2(q)
(q; q)∞

= P,(i)

T4(q)
(q; q)∞

= 3P 2 − 2Q,(ii)

T6(q)
(q; q)∞

= 15P 3 − 30PQ + 16R,(iii)

T8(q)
(q; q)∞

= 105P 4 − 420P 2Q + 448PR − 132Q2,(iv)

T10(q)
(q; q)∞

= 945P 5 − 6300P 3Q + 10080P 2R − 5940PQ2 + 1216QR,(v)

T12(q)
(q; q)∞

= 10395P 6 − 103950P 4Q + 221760P 3R − 196020P 2Q2(vi)

+ 80256PQR − 2712Q3 − 9728R2.

The first formula has an interesting arithmetic interpretation.

Corollary 14.2.1. For n ≥ 1, let σ(n) =
∑

d|n d, and define σ(0) = − 1
24 . Let

n denote a nonnegative integer. Then

− 24
∑

j+k(3k±1)/2=n
j,k≥0

(−1)kσ(j) =

⎧⎪⎨
⎪⎩

(−1)r(6r − 1)2, if n = r(3r − 1)/2,

(−1)r(6r + 1)2, if n = r(3r + 1)/2,

0, otherwise.

(14.2.3)

Since σ(j) is multiplicative, we note that σ(j) is even except when j is
a square or twice a square. Thus, from Corollary 14.2.1, we see that, unless
n = r(3r ± 1)/2, the number of representations of n as a sum of a square or
twice a square and a generalized pentagonal number k(3k ± 1)/2 is even. For
example, if n = 20, then 20 = 8 + 12 = 18 + 2.

Corollary 14.2.1 is, in fact, called Euler’s identity and is usually stated in
a slightly different form. For a combinatorial proof of (14.2.3), see a paper by
I. Pak [226, pp. 59–60], and for a bijective proof of an equivalent formulation,
see S. Kim’s paper [192].

Entry 14.2.2 (p. 188). Define the polynomials f2k(P,Q,R), k ≥ 1, by

f2k(P,Q,R) :=
T2k(q)
(q; q)∞

. (14.2.4)
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Then, for k ≥ 1,

f2k(P,Q,R) = 1 · 3 · · · (2k − 1)
{

P k − k(k − 1)
3

P k−2Q

+
8k(k − 1)(k − 2)

45
P k−3R − 11k(k − 1)(k − 2)(k − 3)

210
P k−4Q2

+
152k(k − 1)(k − 2)(k − 3)(k − 4)

14175
P k−5QR + · · ·

}
.

(14.2.5)

The statement of Entry 14.2.2 is admittedly incomplete. The missing terms
represented by + · · · contain all products P aQbRc such that 2a+4b+6c = 2k.
It would be extremely difficult to find a general formula for f2k(P,Q,R) that
would give explicit representations for each coefficient of P 2aQ4bR6c.

Important in our proofs are the simple identities

(6n ± 1)2 = 24
n(3n ± 1)

2
+ 1. (14.2.6)

Proof of Entry 14.2.1. Observe that

P (q) = 1 + 24q
d

dq

∞∑
n=1

log(1 − qn)

= 1 + 24q
d

dq
log(q; q)∞

= 1 + 24q

d
dq (q; q)∞
(q; q)∞

. (14.2.7)

Thus, using (14.2.1) and (14.2.6), we find that

(q; q)∞P (q) = (q; q)∞ + 24q
d

dq

(
1 +

∞∑
n=1

(−1)n
{

qn(3n−1)/2 + qn(3n+1)/2
})

= (q; q)∞ + 24
∞∑

n=1

(−1)n

{
n(3n − 1)

2
qn(3n−1)/2 +

n(3n + 1)
2

qn(3n+1)/2

}

= (q; q)∞ +
∞∑

n=1

(−1)n
{(

(6n − 1)2 − 1
)
qn(3n−1)/2

+
(
(6n + 1)2 − 1

)
qn(3n+1)/2

}

= (q; q)∞ +
∞∑

n=1

(−1)n
{

(6n − 1)2qn(3n−1)/2 + (6n + 1)2qn(3n+1)/2
}

− (q; q)∞ + 1
= T2(q). (14.2.8)
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This completes the proof of (i).
In the proofs of the remaining identities of Entry 14.2.1, in each case, we

apply the operator 24q d
dq to the preceding identity. In each proof we also use

the identities
24q

d

dq
T2k(q) = T2k+2(q) − T2k(q), (14.2.9)

which follows from differentiation and the use of (14.2.6), and

24q
d

dq
(q; q)∞ = T2(q) − (q; q)∞, (14.2.10)

which arose in the proof of (14.2.8).
We now prove (ii). Applying the operator 24q d

dq to (14.2.8) and using
(14.2.9) and (14.2.10), we deduce that

P (q) (T2(q) − (q; q)∞) + (q; q)∞24q
d

dq
P (q) = T4(q) − T2(q).

Employing (i) to simplify and using the first differential equation in (14.2.2),
we arrive at

P 2(q)(q; q)∞ + 2
(
P 2(q) − Q(q)

)
(q; q)∞ = T4(q),

or
T4 = (3P 2 − 2Q)(q; q)∞, (14.2.11)

as desired.
To prove (iii), we apply the operator 24q d

dq to (14.2.11) and use (14.2.9)
and (14.2.10) to deduce that

T6 − T4 = 24
(

6Pq
dP

dq
− 2q

dQ

dq

)
(q; q)∞ + (3P 2 − 2Q) (T2 − (q; q)∞)

=
(
12P (P 2 − Q) − 16(PQ − R)

)
(q; q)∞ + (3P 2 − 2Q)(P − 1)(q; q)∞,

where we used (14.2.2) and (i). If we now employ (14.2.11) and simplify, we
conclude that

T6 =
(
15P 3 − 30PQ + 16R

)
(q; q)∞.

In general, by applying the operator 24q d
dq to T2k and using (14.2.9) and

(14.2.10), we find that

T2k+2 − T2k = 24q
d

dq
f2k(P,Q,R) (q; q)∞ + f2k(P,Q,R)(P − 1)(q; q)∞,

where we have used the notation (14.2.4). Then proceeding by induction while
using the formula (14.2.4) for T2k, we find that

T2k+2

(q; q)∞
= 24q

d

dq
f2k(P,Q,R) + Pf2k(P,Q,R).
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Thus, in the notation (14.2.4),

f2k+2(P,Q,R) = 24q
d

dq
f2k(P,Q,R) + Pf2k(P,Q,R). (14.2.12)

With the use of (14.2.12) and the differential equations (14.2.2), it should
now be clear how to prove the remaining identities, (iv)–(vi), and so we omit
further details. ��

Proof of Corollary 14.2.1. By expanding the summands of P (q) in (14.1.2)
in geometric series and collecting the coefficients of qn for each positive integer
n, we find that

P (q) = 1 − 24
∞∑

n=1

σ(n)qn = −24
∞∑

n=0

σ(n)qn,

upon using the definition σ(0) = − 1
24 . Thus, by (14.2.1), Entry 14.2.1 (i) can

be written in the form

− 24
∞∑

j=0

σ(j)qj ·
(

1 +
∞∑

k=1

(−1)k
{

qk(3k−1)/2 + qk(3k+1)/2
})

= 1 +
∞∑

n=1

(−1)n
{

(6n − 1)2qn(3n−1)/2 + (6n + 1)2qn(3n+1)/2
}

.

(14.2.13)

Equating coefficients of qn, n ≥ 1, on both sides of (14.2.13), we complete the
proof. ��

Proof of Entry 14.2.2. We apply induction on k. For k = 1, 2, the assertion
(14.2.5) is true by Entry 14.2.1(i), (ii). Assume therefore that (14.2.5) is valid;
we shall prove (14.2.5) for k replaced by k + 1. Our proof employs (14.2.12).

The terms involving P k−6, which are not displayed on the right side of
(14.2.5), are of the forms c1P

k−6R2, c2P
k−6Q3, and c3P

k−6RQ2, for certain
constants c1, c2, and c3. If we differentiate each of these expressions and use
the differential equations (14.2.2), we can easily check that no terms like the
five displayed forms in (14.2.5) arise. Thus, when applying (14.2.12) along
with induction on k, we need only concern ourselves with the derivatives of
the five displayed terms in (14.2.5); no further contributions are made by the
derivatives of undisplayed terms to the five coefficients with k replaced by
k + 1.

By (14.2.12), (14.2.2), and induction, we find that

f2k+2(P,Q,R) = 1 · 3 · · · (2k − 1)
{

kP k−1 · 2(P 2 − Q)

− k(k − 1)(k − 2)
3

P k−3Q · 2(P 2 − Q)
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− k(k − 1)
3

P k−2 · 8(PQ − R)

+
8k(k − 1)(k − 2)(k − 3)

45
P k−4R · 2(P 2 − Q)

+
8k(k − 1)(k − 2)

45
P k−3 · 12(PR − Q2)

− 11k(k − 1)(k − 2)(k − 3)(k − 4)
210

P k−5Q2 · 2(P 2 − Q)

− 11k(k − 1)(k − 2)(k − 3)
210

P k−4 · 2Q · 8(PQ − R)

+
152k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)

14175
× P k−6QR · 2(P 2 − Q)

+
152k(k − 1)(k − 2)(k − 3)(k − 4)

14175
P k−5R · 8(PQ − R)

+
152k(k − 1)(k − 2)(k − 3)(k − 4)

14175
P k−5Q

× 12(PR − Q2) + · · ·
}

+ 1 · 3 · · · (2k − 1)
{

P k+1 − k(k − 1)
3

P k−1Q

+
8k(k − 1)(k − 2)

45
P k−2R

−11k(k − 1)(k − 2)(k − 3)
210

P k−3Q2

+
152k(k − 1)(k − 2)(k − 3)(k − 4)

14175
P k−4QR + · · ·

}
.

The remaining task is to collect coefficients of the five terms P k+1, P k−1Q,
P k−2R, P k−3Q2, and P k−4QR. Upon completing this routine, but admittedly
tedious, task, we complete the proof of the entry as stated by Ramanujan in
[244]. ��

Beginning with his paper [240] and notebooks [243], Ramanujan devoted
considerable attention to Eisenstein series, most notably to P , Q, and R,
defined by (14.1.2)–(14.1.4). In particular, see [53, pp. 318–333], [54, Chap-
ters 16, 17], and [57, Chapter 33]. The identities in [54, pp. 59, 61–65] are
particularly related to the ones proved above.

The functions Q and R can be represented or evaluated in terms of pa-
rameters prominent in the the theory of elliptic functions [54, pp. 126–127].
The function P does have one representation in terms of elliptic function
parameters [54, p. 120, Entry 9 (iv)], but it is in terms of dz/dx, where
z := z(x) := 2F1( 1

2 , 1
2 ; 1;x), and where q := exp(−π z(1 − x)/z(x)). Eval-

uations of Q and R can be given in terms of z and x; dz/dx does not appear.
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Perhaps the representation of P given in Entry 14.2.1(i) will prove to be more
useful than the aforementioned representation for P .

Besides Corollary 14.2.1, other identities of Ramanujan can be reformu-
lated in terms of divisor sums σk(n) :=

∑
d|n dk. In particular, see [53,

pp. 326–329] and the references cited there. By far, the most comprehensive
study of identities of this sort has been undertaken by J.G. Huard, Z.M. Ou,
B.K. Spearman, and K.S. Williams [181], where many references to the litera-
ture can also be found. On the other hand, R.A. Rankin [245] used elementary
identities for divisor sums to establish relations between Eisenstein series. In
particular, he proved Ramanujan’s differential equations (14.2.2) along these
lines.

14.3 The Series Un(q)

Recall that the series Un(q) is defined in (14.1.5). As in the previous section,
we use Ramanujan’s differential equations (14.2.2) and (14.2.7).

The key to Ramanujan’s work on Un(q) is the following differential-
recurrence relation [244, p. 369].

Entry 14.3.1 (p. 369). For each nonnegative integer n,

Un+2(q) = P (q)Un(q) + 8qU ′
n(q). (14.3.1)

Proof. By the definition of Un(q) in (14.1.5),

U ′
n(q) =

F ′
n(q)(q; q)∞ − 3Fn(q) d

dq
(q; q)∞

(q; q)4∞
,

so that, by (14.2.7),

P (q)Un(q) + 8qU ′
n(q) =

⎛
⎝1 + 24q

d
dq

(q; q)∞

(q; q)∞

⎞
⎠ Fn(q)

(q; q)3∞

+
8qF ′

n(q)(q; q)∞ − 24Fn(q)q d
dq

(q; q)∞

(q; q)4∞

=
Fn(q) + 8qF ′

n(q)
(q; q)3∞

. (14.3.2)

On the other hand, by a simple calculation,

8qF ′
n(q) =

∞∑
j=1

(−1)j−1(2j − 1)n+1
(
(4j2 − 4j + 1) − 1

)
qj(j−1)/2

= Fn+2(q) − Fn(q). (14.3.3)

Substituting (14.3.3) into (14.3.2) and simplifying, we complete the proof. ��
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Entry 14.3.2 (p. 369). If Un(q) is defined by (14.1.5), then

U0(q) = 1, (14.3.4)
U2(q) = P, (14.3.5)

U4(q) =
1
3
(
5P 2 − 2Q

)
, (14.3.6)

U6(q) =
1
9
(
35P 3 − 42PQ + 16R

)
, (14.3.7)

U8(q) =
1
3
(
35P 4 − 84P 2Q − 12Q2 + 64PR

)
, (14.3.8)

U10(q) =
1
9
(
385P 5 − 1540P 3Q − 660PQ2 + 1760P 2R + 64QR

)
. (14.3.9)

Proof. The trivial equality (14.3.4) follows immediately from (14.1.5) and
Jacobi’s identity (14.1.6).

Setting n = 0 in (14.3.1) and using (14.3.4), we deduce (14.3.5).
Next, setting n = 2 in (14.3.1), employing (14.3.5), and then using the

first equation in (14.2.2), we easily complete the proof of (14.3.6).
Fourthly, apply the differential operator q d

dq to (14.3.6), use (14.3.1), and
then employ the first two equations of (14.2.2) to find that

U6 − PU4 =
40
3

· 2P

(
P 2 − Q

12

)
− 16

3
PQ − R

3
.

The desired result (14.3.7) now follows from (14.3.6) and simplification.
Fifthly, apply the differential operator q d

dq to (14.3.7), use (14.3.1), and
then employ all the equations of (14.2.2) to find that

U8−PU6 =
8
9

(
105P 2 P 2 − Q

12
− 42Q

P 2 − Q

12
− 42P

PQ − R

3
+ 16

PR − Q2

2

)
.

If we use (14.3.7) on the left side above, collect terms with like powers, and
simplify, we obtain (14.3.8).

Lastly, apply the differential operator q d
dq to (14.3.8), use (14.3.1), and

then employ all the equations of (14.2.2) to find that

U10 − PU8 =
8
3

(
140P 3 P 2 − Q

12
− 168PQ

P 2 − Q

12
− 84P 2 PQ − R

3

−24Q
PQ − R

3
+ 64R

P 2 − Q

12
+ 64P

PR − Q2

2

)
.

Using (14.3.8) on the left side above and then simplifying, we arrive at (14.3.9)
to complete the proof. ��

It is easy to see from our calculations above that we can deduce the fol-
lowing general theorem stated by Ramanujan [244, p. 369].
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Entry 14.3.3 (p. 369). For any positive integer s,

U2s =
∑

K�,m,nP �QmRn, (14.3.10)

where the sum is over all nonnegative triples of integers �,m, n such that
� + 2m + 3n = s.

Although one can find formulas for some of the coefficients K�,m,n in
(14.3.10), it seems extremely difficult to find a general formula for all K�,m,n.

The identity (14.3.5) arose in a proof of Berndt, S.H. Chan, Liu, and
H. Yesilyurt [70] of the identity

1 + 3
∞∑

n=1

nqn

1 − qn
− 27

∞∑
n=1

nq9n

1 − q9n
=

(q3; q3)10∞
(q; q)3∞(q9; q9)3∞

,

which was used by these four authors to establish a new identity for (q; q)10∞.
The proofs in Section 14.2 first appeared in a paper by Berndt and A.J. Yee

[77], while those in Section 14.3 are taken from [70]. Also see the monograph
by K. Venkatachaliengar [272, pp. 31–32]. Another approach to the identities
proved in this chapter has been devised by H.H. Chan [102]. These ideas of
Ramanujan have been extended in a beautiful way by Chan, S. Cooper, and
P.C. Toh [105], [106]. They have found infinite classes of identities wherein the
roles of (q; q)∞ and (q; q)3∞ are replaced by (q; q)n

∞, n = 2, 4, 6, 8, 10, 14, 26.
In other words, Chan, Cooper, and Toh evaluate certain classes of infinite
series in terms of one of the three aforementioned powers times a polynomial
in the Eisenstein series P , Q, and R. Z.-G. Liu [210] has also found beautiful
expansions for (q; q)n

∞ for n = 2, 6, 8, 10. An equivalent formulation of the
forgoing identities for n = 8 has also been derived by Z. Cao [97]. On the other
hand, H. Hahn [171] has established an analogue of Entry 14.2.1 involving
Eisenstein series on Γ0(2). Further generalizations can be found in T. Huber’s
doctoral dissertation [182, Chapter 4].

In closing this chapter, we remark that recently there have been several
new approaches to Ramanujan’s differential equations (14.1.2)–(14.1.4), with
many providing connections with Riccati differential equations and other dif-
ferential equations. For example, see papers by Chan [102], J.M. Hill, Berndt,
and Huber [180], Huber [183], P. Guha and D. Mayer [162], Hahn [171],
M.J. Ablowitz, S. Chakravarty, and Hahn [1], and R.S. Maier [219].
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Eisenstein Series and Approximations to π

15.1 Introduction

On page 211 in his lost notebook, in the pagination of [244], Ramanujan listed
eight integers, 11, 19, 27, 43, 67, 163, 35, and 51 at the left margin. To the
right of each integer, Ramanujan recorded a linear equation in Q3 and R2.
Although Ramanujan did not indicate the definitions of Q and R, we can
easily (and correctly) ascertain that Q and R are the Eisenstein series

Q(q) := 1 + 240
∞∑

n=1

n3qn

1 − qn

and

R(q) := 1 − 504
∞∑

n=1

n5qn

1 − qn
,

where |q| < 1. To the right of each equation in Q3 and R2, Ramanujan en-
tered an equality involving π and square roots. (For the integer 51, the linear
equation and the equality involving π are not in fact, recorded by Ramanujan.)

The equations in Q3 and R2 cannot possibly hold for all values of q with
|q| < 1. Thus, the first task was to find the correct value of q for each equation.
After trial and error with the aid of S.H. Son, we found that q = − exp(−π

√
n),

where n is the integer at the left margin. (We later read that K. Venkat-
achaliengar [272, p. 135] had also discovered that q = − exp(−π

√
n).) The

equalities in the third column lead to approximations to π that are reminis-
cent of approximations given by Ramanujan in his famous paper on modular
equations and approximations to π [239], [242, p. 33] and studied extensively
by J.M. and P.B. Borwein [86, Chapter 5]. This page in the lost notebook is
also closely connected with theorems connected with the modular j-invariant
stated by Ramanujan on the last two pages of his third notebook [244] and
proved by Berndt and H.H. Chan [63], [57, pp. 309–322].

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 16, c© Springer Science+Business Media, LLC 2009
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In Section 15.2, we prove a very simple general theorem from which the
linear equations in Q3 and R2 in the second column follow as corollaries. In
Sections 15.3 and 15.4, we offer two methods for proving the equalities in
the third column and show how they lead to approximations to π. In Section
15.6, we prove a general series formula for 1/π that is equivalent to a formula
found by D.V. and G.V. Chudnovsky [132] and the Borweins [91]. The first
series representations for 1/π of this type were found by Ramanujan [239],
[242, pp. 23–39] and first proved in print by the Borweins [86], [88]. Three of
the series from [239] are found on page 370 in the lost notebook [244]. We
use Ramanujan’s ideas that are briefly sketched in [239], [242, pp. 23–39] to
establish these three series representations for 1/π. One of Ramanujan’s series
for 1/π from [239] yields 8 digits of π per term, while one of the Borweins [87]
gives 50 digits of π per term. The method of Berndt and Chan gives a series
for 1/π that yields about 73 or 74 digits of π per term [64].

15.2 Eisenstein Series and the Modular j-Invariant

Recall the definition of the modular j-invariant j(τ),

j(τ) = 1728
Q3(q)

Q3(q) − R2(q)
, q = e2πiτ , Im τ > 0. (15.2.1)

In particular, if n is a positive integer,

j

(
3 +

√
−n

2

)
= 1728

Q3
n

Q3
n − R2

n

, (15.2.2)

where, for brevity, we set

Qn := Q(−e−π
√

n) and Rn := R(−e−π
√

n). (15.2.3)

In his third notebook, at the top of page 392 in the pagination of [244],
Ramanujan defined a certain function Jn of singular moduli, which, as Berndt
and Chan [63] easily showed, has the representation

Jn = − 1
32

3

√
j

(
3 +

√
−n

2

)
. (15.2.4)

Hence, from (15.2.2) and (15.2.4),

(−32Jn)3 = 1728
Q3

n

Q3
n − R2

n

. (15.2.5)

After a simple manipulation of (15.2.5), we deduce the following theorem.
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Theorem 15.2.1. For each positive integer n,

((
8
3
Jn

)3

+ 1

)
Q3

n −
(

8
3
Jn

)3

R2
n = 0, (15.2.6)

where Jn is defined by (15.2.4), and Qn and Rn are defined by (15.2.3)

Entry 15.2.1 (p. 211). We have

539Q3
11 − 512R2

11 = 0,

(83 + 1)Q3
19 − 83R2

19 = 0,

(403 + 9)Q3
27 − 403R2

27 = 0,

(803 + 1)Q3
43 − 803R2

43 = 0,

(4403 + 1)Q3
67 − 4403R2

67 = 0,

(533603 + 1)Q3
163 − 533603R2

163 = 0,

((60 + 28
√

5)3 + 27)Q3
35 − (60 + 28

√
5)3R2

35 = 0,

and

((4(4 +
√

17)2/3(5 +
√

17))3 + 1)Q3
51 − (4(4 +

√
17)2/3(5 +

√
17))3R2

51 = 0.

Proof. In [63], [57, pp. 310–311], it was shown that

J11 = 1,

J27 = 5 · 31/3,

J67 = 165,

J35 =
√

5

(
1 +

√
5

2

)4

,

J19 = 3,

J43 = 30,
J163 = 20, 010,

J51 = 3(4 +
√

17)2/3

(
5 +

√
17

2

)
.

(15.2.7)

Using (15.2.7) in (15.2.6), we readily deduce all eight equations in Qn and
Rn. ��

15.3 Eisenstein Series and Equations in π: First Method

Recall that

P (q) := 1 − 24
∞∑

n=1

nqn

1 − qn
, |q| < 1, (15.3.1)

and put
Pn := P (−e−π

√
n). (15.3.2)

Next, set
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jn = j

(
3 +

√
−n

2

)
,

bn = {n(1728 − jn)}1/2
, (15.3.3)

and

an =
1
6
bn

{
1 − Qn

Rn

(
Pn − 6

π
√

n

)}
. (15.3.4)

The numbers an and bn arise in series representations for 1/π proved by the
Chudnovskys [132] and the Borweins [88], namely,

1
π

=
1√
−jn

∞∑
k=0

(6k)!
(3k)!(k!)3

an + kbn

jk
n

, (15.3.5)

where (c)0 = 1, (c)k = c(c + 1) · · · (c + k − 1), for k ≥ 1. These authors have
calculated an and bn for several values of n. We show how (15.3.3) and (15.3.4)
lead to a formula from which Ramanujan’s equalities in the third column on
page 211 follow.

From (15.2.6), we easily see that

Qn

Rn
=

1√
Qn

((
8
3Jn

)3 + 1(
8
3Jn

)3
)−1/2

, (15.3.6)

and from (15.3.4), we find that

Qn

Rn

(
6
π
−
√

nPn

)
= 6

√
n

an

bn
−
√

n. (15.3.7)

The substitution of (15.3.6) into (15.3.7) leads to the following theorem.

Theorem 15.3.1. If Pn, bn, an, and Jn are defined by (15.3.2)–(15.3.4) and
(15.2.4), respectively, then

1√
Qn

(√
nPn − 6

π

)
=

√
n

(
1 − 6

an

bn

)(( 8
3Jn

)3 + 1(
8
3Jn

)3
)1/2

. (15.3.8)

Entry 15.3.1 (p. 211). We have

1√
Q11

(√
11P11 −

6
π

)
=

√
2,

1√
Q19

(√
19P19 −

6
π

)
=

√
6,

1√
Q27

(√
27P27 −

6
π

)
= 3

√
6
5
,
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1√
Q43

(√
43P43 −

6
π

)
= 6

√
3
5
,

1√
Q67

(√
67P67 −

6
π

)
= 19

√
6
55

,

1√
Q163

(√
163P163 −

6
π

)
= 362

√
3

3335
,

1√
Q35

(√
35P35 −

6
π

)
= (2 +

√
5)

√
2√
5
,

1√
Q51

(√
51P51 −

6
π

)
= .

Ramanujan’s formulation of the first example of Entry 15.3.1 is apparently
given by

√
11 − 6

π
+ · · ·√

1 − 240
(

13

eπ
√

11 · · ·

) =
√

2.

(The denominator with 13 in the numerator is unreadable.) Further equalities
are even briefer, with

√
Qn replaced by

√·. Note that Pn is replaced by “1 +
· · · ” in Ramanujan’s examples. Also observe that Ramanujan did not record
the right side when n = 51. Because it is unwieldy, we also have not recorded
it. However, readers can readily complete the equality, since J51 is given in
(15.2.7), and a51 and b51 are given in the next table.

Proof. The first six values of an and bn were calculated by the Borweins [88,
pp. 371–372]. The values for n = 35 and 51 were calculated by Berndt and
Chan [64]. We record all eight pairs of values for an and bn in the following
table:

n an bn

11 60 616
19 300 4104
27 1116 18216
43 9468 195048
67 122124 3140424
163 163096908 6541681608
35 1740 + 768

√
5 32200 + 14336

√
5

51 11820 + 2880
√

17 265608 + 64512
√

17

If we substitute these values of an and bn in Theorem 15.3.1, we obtain,
after some calculation and simplification, Ramanujan’s equalities. ��
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Theorem 15.3.1 and the last set of examples yield approximations to π.
Let rn denote the right-hand side of (15.3.8). If we use the expansions

Pn = 1 + 24e−π
√

n − · · · and
√

Qn = 1 − 120e−π
√

n + · · · ,

we easily find that

π =
6√

n − rn

(
1 − 24

√
n + 120rn√
n − rn

e−π
√

n + · · ·
)

.

We thus have proved the following theorem.

Theorem 15.3.2. We have

π ≈ 6√
n − rn

=: An,

with the error approximately equal to

144
√

n + 5rn

(
√

n − rn)2
e−π

√
n,

where rn denotes the right-hand side of (15.3.8).

See Ramanujan’s paper [239], [242, p. 33] for other approximations to π
of this sort.

In the table below, we record the decimal expansion of each approximation
An and the number Nn of digits of π agreeing with the approximation.

n An Nn

11 3.1538 . . . 1
19 3.1423 . . . 2
27 3.1416621 . . . 3
43 3.141593 . . . 5
67 3.14159266 . . . 7
163 3.14159265358980 . . . 12
35 3.141601 . . . 3
51 3.14159289 . . . 6

15.4 Eisenstein Series and Equations in π: Second
Method

Set P := P(q) := P (−q), Q := Q(q) := Q(−q), R := R(q) := R(−q), Δ :=
Δ(q) := Q3(q)−R2(q), and J := J(q) := 1728/j

(
3+τ
2

)
, where q = e2πiτ . Set

z4 := Q =
(

Δ
J

)1/3

, (15.4.1)
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by (15.2.1). Then, by (15.4.1) and the definition of Δ,

R =
√

Q3 − Δ =

√
Δ
J

√
1 − J = z6

√
1 − J. (15.4.2)

Recall the differential equations [240], [242, p. 142]

q
dP

dq
=

P 2(q) − Q(q)
12

, q
dQ

dq
=

P (q)Q(q) − R(q)
3

, q
dR

dq
=

P (q)R(q) − Q2(q)
2

,

(15.4.3)
which yield the associated differential equations

q
dP
dq

=
P2(q) − Q(q)

12
, q

dQ
dq

=
P(q)Q(q) − R(q)

3
, q

dR
dq

=
P(q)R(q) − Q2(q)

2
.

(15.4.4)
Now, by rearranging the second equation in (15.4.4), with the help of

(15.4.1) and (15.4.2), we find that

P(q) =
R(q)
Q(q)

+
12q

z

dz

dq
. (15.4.5)

From the chain rule and (15.4.5), it follows that, for any positive integer n,

P(qn) =
R(qn)
Q(qn)

+
12q

nz(qn)
dz(qn)

dq
.

Subtracting (15.4.5) from the last equality and setting

m :=
z(q)
z(qn)

,

we find that

nP(qn) − P(q) = n
R(qn)
Q(qn)

− R(q)
Q(q)

+ 12
q

z(qn)
dz(qn)

dq
− 12

q

z(q)
dz(q)
dq

= n
R(qn)
Q(qn)

− R(q)
Q(q)

− 12
q

m

dm

dq
. (15.4.6)

Our next aim is to replace dm
dq in (15.4.6) by dm

dJ (J(q),J(qn)). From
(15.2.1), the definition of J, (15.4.4), (15.4.1), and (15.4.2), upon differen-
tiation, we find that

q
dJ
dq

=
(3Q2Q′ − 2RR′)Q3 − 3Q2Q′(Q3 − R2)

Q6

=
{Q2(PQ − R) − R(PR − Q2)}Q3 − Q2(PQ − R)(Q3 − R2)

Q6

=
RQ3 − R3

Q4
=

RΔ
Q4

= z6
√

1 − J
J
Q

= z2J
√

1 − J, (15.4.7)
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which implies that

z2(q) =
1

J(q)
√

1 − J(q)
q
dJ(q)

dq
. (15.4.8)

Replacing q by qn in (15.4.8) and simplifying, we deduce that

z2(qn) =
1

nJ(qn)
√

1 − J(qn)
q
dJ(qn)

dq
. (15.4.9)

Using (15.4.8) and (15.4.9), we conclude that

m2 = n
J(qn)

√
1 − J(qn)

J(q)
√

1 − J(q)
dJ(q)
dJ(qn)

. (15.4.10)

It is well known that there is a relation (known as the class equation) be-
tween j(τ) and j(nτ) for any integer n [146, p. 231, Theorem 11.18(i)]. With
the definition of J given at the beginning of this section, the class equation
translates to a relation between J(q) and J(qn). It follows that

dJ(q)
dJ(qn)

= F (J(q),J(qn)), (15.4.11)

for some rational function F (x, y). Thus, by (15.4.10) and (15.4.11), we may
differentiate m with respect to J, and so, by (15.4.7) and the definition of
m(q),

2
q

m(q)
dm

dq
= 2z(q)z(qn)

q

z2(q)
dm

dq

= 2z2(qn)m(q)
dm

dJ
q
dJ
dq

= z2(qn)J
√

1 − J
dm2(q)

dJ
.

Using this in (15.4.6), we deduce that

nP(qn) − P(q)
z(q)z(qn)

= n
R(qn)
Q(qn)

− R(q)
Q(q)

− 6z2(qn)J(q)
√

1 − J(q)
dm2

dJ
. (15.4.12)

If we put q = e−π/
√

n, n > 0, (15.4.12) takes the shape

nP(e−π
√

n) − P(e−π/
√

n) = n
R(e−π

√
n)

Q(e−π
√

n)
− R(e−π/

√
n)

Q(e−π/
√

n)

− 6z2(e−π
√

n)J(e−π/
√

n)
√

1 − J(e−π/
√

n)

× dm2

dJ

(
J(e−π

√
n),J(e−π/

√
n)
)

. (15.4.13)

It is well known that [120, p. 84]
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J(e−π/
√

n) = J(e−π
√

n). (15.4.14)

Furthermore, if

ϕ(q) =
∞∑

n=−∞
qn2

and ψ(q) =
∞∑

n=0

qn(n+1)/2, |q| < 1, (15.4.15)

then [54, p. 127, Entries 13(iii), (iv)]

Q(q) = z4
2(1 + 14x2 + x2

2) (15.4.16)

and

R(q) = z6
2(1 + x2)(1 − 34x2 + x2

2), (15.4.17)

where [54, pp. 122–123, Entries 10(i), 11(iii)]

z2 := ϕ2(q) and x2 := 16q
ψ4(q2)
ϕ4(q)

. (15.4.18)

Replacing q by −q in (15.4.16) and (15.4.17), and using (15.4.18), we find that

Q(q) = ϕ8(−q) − 224qϕ4(−q)ψ4(q2) + 162q2ψ8(q2) (15.4.19)

and

R(q) = (ϕ4(−q) − 16qψ4(q2))

× (ϕ8(−q) + 544qϕ4(−q)ψ4(q2) + 162q2ψ8(q2)). (15.4.20)

Using the transformation formula [54, p. 43, Entry 27(ii)]

ϕ(e−π/t) = 2e−πt/4
√

tψ(e−2πt)

in (15.4.19) and (15.4.20), we deduce that

Q(e−π/
√

n) = n2Q(e−π
√

n) (15.4.21)

and

R(e−π/
√

n) = −n3R(e−π
√

n). (15.4.22)

Using (15.4.14), (15.4.22), and (15.4.21), we may rewrite (15.4.13) as

nP(e−π
√

n) − P(e−π/
√

n)

= 2n
R(e−π

√
n)

Q(e−π
√

n)
− 6z2(e−π

√
n)Jn

√
1 − J1/n

dm2

dJ
(Jn,Jn)
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=
(

2n
√

1 − Jn − 6Jn

√
1 − J1/n

dm2

dJ
(Jn,Jn)

)
z2(e−π

√
n),

(15.4.23)

where
Jk = J(e−π

√
k), k > 0. (15.4.24)

This gives the first relation between P(e−π
√

n) and P(e−π/
√

n).
Recall the definitions of Ramanujan’s function f(−q) and the Dedekind

eta function η(τ), namely,

f(−q) := (q; q)∞ =: e−2πiτ/24η(τ), q = e2πiτ , Im τ > 0.

The function f satisfies the well-known transformation formula [54, p. 43]

n1/4e−π
√

n/24f(e−π
√

n) = e−π/(24
√

n)f(e−π/
√

n), n > 0. (15.4.25)

Logarithmically differentiating (15.4.25) with respect to n, multiplying both
sides by 48n3/2/π, rearranging terms, and employing the definition of P (q)
given in (15.3.1), we find that

12
√

n

π
= nP(e−π

√
n) + P(e−π/

√
n). (15.4.26)

This gives a second relation between P(e−π
√

n) and P(e−π/
√

n).
Now adding (15.4.23) and (15.4.26) and dividing by 2, we arrive at

nP(e−π
√

n) =
6
√

n

π
+
(

n
√

1 − Jn − 3Jn

√
1 − J1/n

dm2

dJ
(Jn,Jn)

)
z2(e−π

√
n),

or, by (15.4.1),

1√
Qn

(
Pn − 6√

nπ

)
=
√

1 − Jn

(
1 − 3Jn

√
1 − J1/n

n
√

1 − Jn

dm2

dJ
(Jn,Jn)

)
,

where Qn is defined by (15.2.3), and Pn is defined by (15.3.2). (Be careful:
Jn �= Jn, where Jn is defined by (15.2.4).)

We record the last result in the following theorem, which should be com-
pared with Theorem 15.3.1.

Theorem 15.4.1. If Pn, Qn, and Jn are defined by (15.3.2), (15.2.3), and
(15.4.24), respectively, then

1√
Qn

(
Pn − 6√

nπ

)
=
√

1 − Jn tn, (15.4.27)

where

tn :=

(
1 − 3Jn

√
1 − J1/n

n
√

1 − Jn

dm2

dJ
(Jn,Jn)

)
. (15.4.28)



15.6 Ramanujan’s Series for 1/π 375

Observe that, by (15.4.1), (15.4.2), and Theorem 15.2.1,

√
1 − Jn =

((
8
3Jn

)3 + 1(
8
3Jn

)3
)1/2

. (15.4.29)

Hence, the values of
√

1 − Jn for those n given on page 211 of the lost notebook
follow immediately from (15.2.7). In order to rederive Entry 15.3.1, it suffices
to compute tn.

Theorem 15.4.2. If n > 1 is an odd positive integer, then tn lies in the ring
class field of Z[

√
−n].

A proof of Theorem 15.4.2 can be found in [64]. In certain cases, one can
use Theorem 15.4.2 to empirically calculate tn; for more details, see [64].

15.5 Page 213

On page 213 in his lost notebook [244], Ramanujan lists three further quotients
of Eisenstein series, the second of which is difficult to read. Since Ramanujan
did not make any claims or indicate (even cryptically) any associated singular
moduli, we have not made any attempt at further investigations. The quotients
are given by

1
31 1

4R2 − 30 1
4Q3

,

1
9595 45

64R2 − 9594 45
64Q3

,

64
189Q3 − 125R2

.

Note that if the numerator and denominator of the last quotient is divided
by 64, then the difference of the coefficients in each of the three quotients is
equal to 1.

15.6 Ramanujan’s Series for 1/π

On page 370 in his lost notebook, Ramanujan records three series for 1/π.
In fact, these three series are the identities (28)–(30) in Ramanujan’s famous
paper [239], [242, pp. 36–37]. These series and fourteen further series for 1/π
were established by the Borwein brothers [86, Chapter 5]. In this section, we
take a different approach from that of the Borweins and use Eisenstein series
to establish a very general series for 1/π from which the three series on page
370 can be determined.
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Throughout this section, we employ the notation of Chapter 13. In par-
ticular, we recall the representation for the base q in (13.2.8), the definition
of the modular equation of degree n arising from the equation (13.2.5), the
definitions of z in (13.2.9) and z1 and zn in (13.2.6), and the definition of the
multiplier m in (13.2.7). The two most important ingredients in our deriva-
tions are Ramanujan’s representation for P (q2) given by [54, p. 120, Entry
9(iv)]

P (q2) = (1 − 2x)z2 + 6x(1 − x)z
dz

dx
(15.6.1)

and Clausen’s formula, which we use in the form [86, p. 180, Theorem 5.7(a)]

z2 = 3F2( 1
2 , 1

2 , 1
2 ; 1, 1;X) =

∞∑
k=0

AkXk, (15.6.2)

where

Ak :=
(1
2 )3k
k!3

and X := 4x(1 − x). (15.6.3)

From (15.6.2) and (15.6.3),

2z
dz

dx
=

∞∑
k=0

AkkXk−1 · 4(1 − 2x). (15.6.4)

Hence, from (15.6.1), (15.6.2), (15.6.4), and (15.6.3),

P (q2) = (1 − 2x)
∞∑

k=0

AkXk + 3(1 − 2x)
∞∑

k=0

AkkXk

=
∞∑

k=0

{(1 − 2x) + 3(1 − 2x)k}AkXk. (15.6.5)

We next derive another representation for P (q2). In the notation

q = e−y, y = π
2F1( 1

2 , 1
2 ; 1; 1 − x)

2F1( 1
2 , 1

2 ; 1;x)
,

used by Ramanujan in Chapter 16 and throughout the remainder of his second
notebook, we quote from Entry 9(i) in Chapter 17 in his second notebook [243],
[54, p. 120]:

dy

dx
= − 1

x(1 − x)z2
.

A simple application of the chain rule gives

dq

dx
=

q

x(1 − x)z2
,

or
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q
dx

dq
= x(1 − x)z2. (15.6.6)

Hence, from (15.6.1) and (15.6.6),

6q

z

dz

dq
= P (q2) − (1 − 2x)z2. (15.6.7)

If we set t = qn, then from (15.6.7) and the chain rule,

6nqn

z(qn)
dz

dt
= n

(
P (q2n) − (1 − 2x(qn))z2(qn)

)
. (15.6.8)

Logarithmically differentiating the formula for m in (13.2.7), we deduce that

q
m′(q)
m(q)

= q
z′(q)
z(q)

− nqn z′(qn)
z(qn)

. (15.6.9)

Hence, by (15.6.7)–(15.6.9),

6q
m′(q)
m(q)

= P (q2) − (1 − 2x(q))z2 − nP (q2n) + n(1 − 2x(qn))z2(qn)

= P (q2) − nP (q2n) − (1 − 2x(q))z2 + n(1 − 2x(qn))z2(qn).
(15.6.10)

Now, set
q := e−π/

√
n and xn := x(e−π

√
n).

Then, from (13.2.6),
zn = z(e−π

√
n).

Therefore, for this value of q, we rewrite (15.6.10) in the form

6e−π/
√

n m′

m
(e−π/

√
n) = P (e−2π/

√
n) − nP (e−2π

√
n)

− (1 − 2x1/n)z2
1/n + n(1 − 2xn)z2

n. (15.6.11)

Recalling (13.2.8) and the notation q = e−y = e−π/
√

n, we see that

2F1( 1
2 , 1

2 ; 1; 1 − x1/n)

2F1( 1
2 , 1

2 ; 1;x1/n)
=

1√
n

. (15.6.12)

Also, from the definition of a modular equation revolving around (13.2.5), and
from (15.6.12),

2F1( 1
2 , 1

2 ; 1; 1 − xn)

2F1( 1
2 , 1

2 ; 1;xn)
= n

2F1( 1
2 , 1

2 ; 1; 1 − x1/n)

2F1( 1
2 , 1

2 ; 1;x1/n)
=

√
n. (15.6.13)

Hence, from (15.6.12), (15.6.13), and (13.2.7), we conclude that
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1 − xn = x1/n, z1/n =
√

nzn, and m(e−π/
√

n) =
√

n. (15.6.14)

Thus, 1 − 2x1/n = −(1 − 2xn), and, from (15.6.11) and (15.6.14), we deduce
that

6e−π/
√

n m′

m
(e−π/

√
n) = P (e−2π/

√
n)−nP (e−2π

√
n)+2n(1−2xn)z2

n. (15.6.15)

The formula above is of central importance, because for twelve values of n,
Ramanujan [239], [242, pp. 33–34] derived useful representations for nP (q2n)−
P (q2) in terms of theta functions.

We can eliminate P (e−2π/
√

n) from (15.6.15) using the transformation for-
mula for P (q), which we now derive. Recall the transformation formula for
Ramanujan’s function f(−q) given by [54, p. 43, Entry 27(iii)]

e−α/12α1/4f(−e−2α) = e−β/12β1/4f(−e−2β), (15.6.16)

where αβ = π2, with α and β both positive. Taking the logarithm of both
sides of (15.6.16), we find that

− α

12
+

1
4

log α +
∞∑

k=1

log(1 − e−2kα) = − β

12
+

1
4

log β +
∞∑

k=1

log(1 − e−2kβ).

(15.6.17)
Differentiating both sides of (15.6.17) with respect to α, we deduce that

− 1
12

+
1
4α

+
∞∑

k=1

2ke−2kα

1 − e−2kα
=

β

12α
− 1

4α
−

∞∑
k=1

(2kβ/α)e−2kβ

1 − e−2kβ
. (15.6.18)

Multiplying both sides of (15.6.18) by 12α and rearranging, we arrive at

6 − α

(
1 − 24

∞∑
k=1

ke−2kα

1 − e−2kα

)
= β

(
1 − 24

∞∑
k=1

ke−2kβ

1 − e−2kβ

)
. (15.6.19)

Setting α = π/
√

n, so that β = π
√

n, recalling the definition of P (q), and
rearranging slightly, we see that (15.6.19) takes the shape

6
√

n

π
= P (e−2π/

√
n) + nP (e−2π

√
n). (15.6.20)

Utilizing (15.6.20) in (15.6.15), we conclude that

6e−π/
√

n m′

m
(e−π/

√
n) =

6
√

n

π
− 2nP (e−2π

√
n) + 2n(1 − 2xn)z2

n. (15.6.21)

Return to (15.6.5) and set q = e−π
√

n. After (15.6.3), define

Xn = 4xn(1 − xn). (15.6.22)
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Thus, (15.6.5) takes the form

P (e−2π
√

n) =
∞∑

k=0

{(1 − 2xn) + 3(1 − 2xn)k}AkXk
n. (15.6.23)

Divide both sides of (15.6.21) by 2n and substitute P (e−2π
√

n) from (15.6.23)
into (15.6.21) to deduce that

3e−π/
√

n

n

m′

m
(e−π/

√
n) =

3
π
√

n
−

∞∑
k=0

{(1 − 2xn) + 3(1 − 2xn)k}AkXk
n

+ (1 − 2xn)z2
n

=
3

π
√

n
− 3

∞∑
k=0

(1 − 2xn)kAkXk
n,

where we have used (15.6.2) with q = e−π
√

n and (15.6.22). Hence, we have
derived the following general series representation for 1/π.

Theorem 15.6.1. Let Xn = 4xn(1 − xn) and recall that Ak is defined in
(15.6.3). Then for any positive integer n,

1
π
√

n
=

∞∑
k=0

(1 − 2xn)kAkXk
n +

e−π/
√

n

n

m′

m
(e−π/

√
n). (15.6.24)

Now, by the chain rule, (15.6.6), and (15.6.3),

q
dm

dq
= q

dm

dX

dX

dx

dx

dq
=

dm

dX
4(1− 2x)x(1− x)z2 = z2X(1− 2x)

dm

dX
. (15.6.25)

Set q = e−π/
√

n in (15.6.25) and recall from (15.6.14) that z2
1/n = nz2

n and
m =

√
n. Thus,

e−π/
√

n

2n

m′

m
(e−π/

√
n) =

z2
n

2
√

n
X1/n(1 − 2x1/n)

dm

dX

∣∣∣∣
q=e−π/

√
n

=
1

2
√

n
X1/n(1 − 2x1/n)

dm

dX

∣∣∣∣
q=e−π/

√
n

∞∑
k=0

AkXk
n,

(15.6.26)

by (15.6.3). Substituting (15.6.26) into (15.6.24), we arrive at the following
theorem.

Theorem 15.6.2. Let X = 4x(1−x) and Xn = 4xn(1−xn). Let Ak be given
by (15.6.3). Then for any positive integer n,

1
π
√

n
=

∞∑
k=0

(an + bnk)AkXk
n, (15.6.27)
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where

an =
1

2
√

n
X1/n(1−2x1/n)

dm

dX

∣∣∣∣
q=e−π/

√
n

and bn = 1−2xn. (15.6.28)

Our next task is to use Theorem 15.6.2 to establish three series for 1/π
found on page 370 in Ramanujan’s lost notebook. These three series are series
(28)–(30) in Ramanujan’s epic paper [239], [242, pp. 36–37]. Although these
three series were established by the Borweins [86, Chapter 5], the proofs we
provide here are different. In fact, our derivations are along the same lines as
those of Ramanujan in [239], [242, p. 36]. In particular, we use representations
for Ramanujan’s function [239], [242, pp. 33–34]

fn(q) := nP (q2n) − P (q2) (15.6.29)

for n = 3, 7, 15. (Ramanujan used the notation f(n) instead of fn(q).) In
[239], Ramanujan recorded representations for fn(q) for 12 values of n, but
he gave no indication how these might be proved. These formulas are also
recorded in Chapter 21 of Ramanujan’s second notebook [243], and proofs
may be found in [54]. The proofs given below can also be found in the paper
[45] by N.D. Baruah and Berndt. In [239], Ramanujan stated 17 series for 1/π,
and Baruah and Berndt [45] established most of these series as well as many
new series for 1/π using Ramanujan’s ideas.

Entry 15.6.1 (p. 370). Recall from (15.6.3) that

Ak :=
( 1
2 )3k
k!3

, k ≥ 0.

Then
4
π

=
∞∑

k=0

(6k + 1)Ak
1
4k

. (15.6.30)

Proof. Let n = 3. Then, in the notation (15.6.29) [239], [242, p. 33], [54,
p. 460, Entry 3(iii)],

f3(q) = z(q)z(q3)
(
1 +
√

x(q)x(q3) +
√

(1 − x(q))(1 − x(q3))
)

. (15.6.31)

Set q = e−π/
√

3 in (15.6.31) and use (15.6.14) to deduce that

f3(e−π/
√

3) =
√

3
(
1 + 2

√
x3(1 − x3)

)
z2
3 . (15.6.32)

Recall the modular equation, due to A.M. Legendre and rediscovered by Ra-
manujan [243, Chapter 19, Entry 5(ii)], [54, p. 230],

{
x(q)x(q3)

}1/4
+
{
(1 − x(q))(1 − x(q3))

}1/4
= 1. (15.6.33)



15.6 Ramanujan’s Series for 1/π 381

Setting q = e−π/
√

3 in (15.6.33) and using (15.6.14), we find that

2 {x3(1 − x3)}1/4 = 1, (15.6.34)

or, in the notation (15.6.22),

X3 = 4x3(1 − x3) =
1
4
. (15.6.35)

Using (15.6.34) or (15.6.35) in (15.6.32), we deduce that

f3(e−π/
√

3) =
3
√

3
2

z2
3 . (15.6.36)

In fact, x3 is a singular modulus, and Ramanujan calculated this singular
modulus in his notebooks [243], [57, p. 290]. Thus, from the aforementioned
source or from (15.6.35),

1 − 2x3 =
√

3
2

. (15.6.37)

Setting n = 3 in (15.6.15), recalling the definition (15.6.29), and employing
(15.6.36) and (15.6.37), we deduce that

e−π/
√

3 m′

m
(e−π/

√
3) =

1
6

(
−3

√
3

2
+ 6

√
3

2

)
z2
3 =

√
3

4
z2
3 . (15.6.38)

Using (15.6.37), (15.6.38), (15.6.35), and (15.6.2) in (15.6.24) with n = 3, we
find that √

3
π

=
∞∑

k=0

(
3
√

3
2

k +
√

3
4

)
Ak

1
4k

,

which is easily seen to be equivalent to (15.6.30). ��

Entry 15.6.2 (p. 370). If Ak, k ≥ 0, is defined by (15.6.3), then

16
π

=
∞∑

k=0

(42k + 5)Ak
1

26k
. (15.6.39)

Proof. We begin with a modular equation of degree 7,

{
x(q)x(q7)

}1/8
+
{
(1 − x(q))(1 − x(q7))

}1/8
= 1, (15.6.40)

due to C. Guetzlaff in 1834 but rediscovered by Ramanujan in Entry 19(i)
of Chapter 19 of his second notebook [243], [54, p. 314]. Set q = e−π/

√
7 in

(15.6.40) and use (15.6.14) and (15.6.22) to deduce that

2 {x7(1 − x7)}1/8 = 1 and X7 =
1
26

. (15.6.41)
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Ramanujan calculated the singular modulus x7 in his first notebook [243], [57,
p. 290], from which, or from (15.6.41), we easily can deduce that

1 − 2x7 =
3
√

7
8

. (15.6.42)

In the notation (15.6.29), from either [239], [242, p. 33] or [57, p. 468, Entry
5(iii)],

f7(q) = 3z(q)z(q7)
(
1 +
√

x(q)x(q7) +
√

(1 − x(q))(1 − x(q7))
)

. (15.6.43)

Putting q = e−π/
√

7 in (15.6.43) and employing (15.6.14) and (15.6.41), we
find that

f7(e−π/
√

7) = 3
√

7
(
1 + 2

√
x7(1 − x7)

)
z2
7 = 3

√
7 · 9

8
z2
7 . (15.6.44)

Thus, by (15.6.15), (15.6.44), and (15.6.42),

6e−π/
√

7 m′

m
(e−π/

√
7) = −27

√
7

8
z2
7 +

42
√

7
8

z2
7 =

15
√

7
8

z2
7 . (15.6.45)

Then, using (15.6.24) with n = 7, and with the help of (15.6.42), (15.6.45),
(15.6.41), and (15.6.2), we conclude that

3√
7π

=
∞∑

k=0

(
9
√

7
8

k +
15
√

7
14 · 8

)
Ak

1
26k

,

which is readily seen to be equivalent to (15.6.39). ��

Entry 15.6.3 (p. 370). If Ak, k ≥ 0, is defined by (15.6.3), then

32
π

=
∞∑

k=0

(
(42

√
5 + 30)k + 5

√
5 − 1

)
Ak

1
26k

(√
5 − 1
2

)8k

. (15.6.46)

Proof. Recall that the Ramanujan–Weber class invariant Gn can be repre-
sented in terms of the singular moduli xn by [57, p. 185]

Gn = {4xn(1 − xn)}−1/24. (15.6.47)

Also recall that [57, p. 190]

G15 = 21/4

(√
5 + 1
2

)1/3

. (15.6.48)

From (15.6.47), (15.6.48), and (15.6.22), we can deduce that
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X15 =
1
26

(√
5 − 1
2

)8

. (15.6.49)

The singular modulus

x15 =
1
16

(√
5 − 1
2

)4

(2 −
√

3)2(4 −
√

15)

was calculated by Ramanujan and recorded in his first notebook [243], [57,
p. 291], and so we can deduce that

1 − 2x15 =
1

32
√

15
(42

√
5 + 30). (15.6.50)

(Of course, we can also deduce (15.6.50) from (15.6.49).) Next, from Entry
9(iii) in Chapter 21 of Ramanujan’s second notebook [243], [54, p. 481], or
from [239], [242, p. 34],

f15(q) = z2(q)z2(q15)
({

1 +
√

x(q)x(q15) +
√

(1 − x(q))(1 − x(q15))
}4

− 1 −
√

x(q)x(q15) −
√

(1 − x(q))(1 − x(q15))
)
.

(15.6.51)

Setting q = e−π/
√

15 in (15.6.51) and using (15.6.14), (15.6.47), (15.6.48), and
(15.6.49), we find that

f15(e−π/
√

15) =
√

15
((

1 + 23/4X
1/8
15

)4

− (1 +
√

X15)
)

z2
15

=
3
√

15
16

(11 + 9
√

5)z2
15. (15.6.52)

It follows from (15.6.15), (15.6.52), and (15.6.50) that

6e−π/
√

15 m′

m
(e−π/

√
15) = −3

√
15

16
(11 + 9

√
5)z2

15 +
30

32
√

15
(42

√
5 + 30)z2

15

=

(
75
√

3
16

− 3
√

15
16

)
z2
15. (15.6.53)

Using (15.6.50), (15.6.53), (15.6.49), and (15.6.2) in (15.6.24) with n = 7, we
conclude that

3√
15π

=
∞∑

k=0

(
3

32
√

15
(42

√
5 + 30)k +

1
30

(
75
√

3
16

− 3
√

15
16

))

× Ak
1

26k

(√
5 − 1
2

)8k

. (15.6.54)
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If we multiply both sides of (15.6.54) by 32
3

√
15 and simplify, we obtain

(15.6.46) to complete the proof. ��

The credit for returning to Ramanujan’s ideas for deriving series for 1/π
is due to Heng Huat Chan. The content of Section 15.6 is therefore almost
entirely due to Chan, who sent detailed lecture notes to the second author of
this book. These notes then inspired Baruah and Berndt to further elaborate
the ideas of Ramanujan and Chan in a series of three papers [45], [46], [47].
In the first paper [45], they use Eisenstein series in the classical base to prove
13 of Ramanujan’s original series, along with many other new series. In the
second [46], they employ Eisenstein series in Ramanujan’s cubic and quartic
theories to prove five of Ramanujan’s series and several new series for 1/π.
Lastly, in [47], they employ Ramanujan’s ideas emphasizing Eisenstein series
to derive many new series representations for 1/π2.

It does not appear to have been widely noticed that the first mathematician
to have published a proof of a general formula for 1/π was S. Chowla [125],
[124] [126, pp. 87–91, 116–119 ]. In particular, he established Entry 15.6.1.
As indicated in the introduction, the Borwein brothers [86] first proved all 17
formulas for 1/π found in Ramanujan’s paper [239], [242, pp. 23–39]. In a series
of papers [87], [88], [89], [91], [92], they greatly extended Ramanujan’s work,
deriving a host of interesting formulas for 1/π. The Chudnovskys [132]–[136]
also amplified and explained Ramanujan’s work. In [137], they also derived
several hypergeometric-like series for π. The work of Berndt and Chan [64]
gives a third approach for generalizing Ramanujan’s series. General series
formulas for 1/π have also been found by Berndt, Chan, and W.-C. Liaw [66],
H.H. Chan, S.H. Chan, and Z.-G. Liu [103], H.H. Chan and Liaw [108], and
H.H. Chan, Liaw, and V. Tan [109]. Further particular series for 1/π have
been derived by H.H. Chan and H. Verrill [113], H.H. Chan and K.P. Loo
[111], H.H. Chan and W. Zudilin [114], M.D. Rogers [249], and S. Cooper
[141]. J. Guillera [163]–[168] has discovered some beautiful series for 1/π as
well as for 1/π2. Further work has been accomplished by W. Zudilin [292]–
[295], with the latter paper offering an interesting survey. Baruah, Berndt, and
H.H. Chan [48] have written a survey paper delineating most of the research
on series for 1/π since the publication of Ramanujan’s paper [239], while also
covering the use of such series by R.W. Gosper Jr. [160] and the Chudnovsky
brothers [135] in calculating the digits of π.



16

Miscellaneous Results on Eisenstein Series

We collect in this chapter some miscellaneous results on Eisenstein series that
do not fit into previous chapters.

16.1 A generalization of Eisenstein Series

On page 332 in [244], Ramanujan enigmatically records the following state-
ment.

Entry 16.1.1 (p. 332).

“
1r

e1sx − 1
+

2r

e2sx − 1
+

3r

e3sx − 1
+ · · · , (16.1.1)

where s is a positive integer and r − s is any even integer.”

(The statement (16.1.1) was poorly photocopied and is difficult to read.) If
we set q = e−x, we can write (16.1.1) in the equivalent form

∞∑
k=0

krqks

1 − qks . (16.1.2)

Thus, if s = 1 and r = 2n − 1 is odd, (16.1.2) is a multiple of the classical
Eisenstein series E2n(τ), where q = e2πiτ and Im τ > 0. What does Ramanu-
jan mean by (16.1.1)? We think that Ramanujan temporarily thought that a
theory could be developed for these more general Eisenstein series that gener-
alizes the classical theory. Because the series (16.1.2) do not live in either the
elliptic or the modular world (except when s = 1), such a theory indeed would
be limited. We have carefully examined Ramanujan’s theory of Eisenstein se-
ries as he developed it in [240], [242, pp. 136–162] to discern whether it can
be generalized. (See also [59, Chapter 4], where details are more completely
given.) If so, we would need to make the following definitions.

Define, for each nonnegative integer r and positive integer s,

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5 17, c© Springer Science+Business Media, LLC 2009
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Sr,s := − Br+1

2(r + 1)
+

∞∑
k=1

krqks

1 − qks . (16.1.3)

When s = 1, Sr,1 = Sr, in Ramanujan’s notation [240, equation (9)], [59, equa-
tion (4.1.4)]. Also define for each nonnegative integer r and positive integer
s,

Ψr,s(q) :=
∞∑

n=1

nrqns

(1 − qns)2
. (16.1.4)

In Ramanujan’s notation [240, equations (23), (24)], [59, equations (4.1.3),
(4.2.7)] Ψr,1(q) = Φ1,r(q). Unfortunately, although the proofs of the recurrence
relations involving Sr and Ψr,s in [240] do not depend on the theory of either
elliptic or modular functions, we have not been able to see how they can be
generalized to the functions (16.1.3) and (16.1.4).

16.2 Representations of Eisenstein Series in Terms of
Elliptic Function Parameters

The following six formulas appear in Ramanujan’s notebooks, but in Ramanu-
jan’s individual notation, instead of the classical notation used here in the lost
notebook. In particular, in [243], Ramanujan sets z := 2K/π, where K is the
complete elliptic integral of the first kind, α = k2, where k, 0 < k < 1, is the
modulus, and 1−α = k′, where k′ =

√
1 − k2 is the complementary modulus.

Entry 16.2.1 (p. 367). In the notation above,

Q(q) =
(

2K

π

)4 (
1 + 14k2 + k4

)
,

Q(q4) =
(

K

π

)4 (
1 + 14k′2 + k′4

)
,

Q(q2) =
(

2K

π

)4 (
1 − (kk′)2

)
,

R(q) =
(

2K

π

)6

(1 + k2)(1 − 34k2 + k4),

R(q4) =
(

K

π

)6

(1 + k′2)
(
1 − 34k′2 + k′4

)
,

R(q2) =
(

2K

π

)6

(k′2 − k2)
(
1 + 1

2 (kk′)2
)
.

These six identities are, respectively, Entry 13(iii), Entry 13(v), Entry
13(i), Entry 13(iv), Entry 13(vi), and Entry 13(ii), in Chapter 17 of Ramanu-
jan’s second notebook [243]. See [54, pp. 126–128] for their statements in
Ramanujan’s notation and for proofs.
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16.3 Values of Certain Eisenstein Series

On page 334, Ramanujan defines a certain function of s involving Eisenstein
series, for which he calculates values at integral arguments of multiples of 4.
Ramanujan’s motivation for these calculations is unclear. For increasing values
of s, the calculations become increasingly laborious. Lacking Ramanujan’s
patience and arithmetic skills, we turned to Mathematica.

Entry 16.3.1 (p. 334). Define the function Ss by

∞∑
k=1

k1−s

e2kπ − 1
= Ss −

1
2
ζ(s − 1) +

3
4π

ζ(s) +
π

12
ζ(s − 2), (16.3.1)

where ζ denotes the Riemann zeta function. Then, if n is a positive integer,

S4n = 0, S0 =
1
4π

, S4 = − π3

360
, S8 = 0, S12 = − π11

232186500
,

S16 =
π15

21470872500
, S20 =

191π19

398240480137500
,

S24 =
907π23

184177171143590625
.

Proof. First, let s = −4n. Since ζ(−2n) = 0 for each positive integer n [271,
p. 19], Ramanujan’s claim that S−4n = 0 reduces to

∞∑
k=1

k4n+1

e2πk − 1
= −ζ(−4n − 1)

2
=

B4n+2

8n + 4
, (16.3.2)

where Bn, n ≥ 0, denotes the nth Bernoulli number, and where we have used
the well-known formula [271, p. 19]

ζ(1 − 2n) = −B2n

2n
.

The identity (16.3.2) has been proved many times in the literature, with the
proof of J.W.L. Glaisher [155] in 1889 being the oldest proof known to us. The
identity can also be found in Ramanujan’s second notebook [243, Chapter 12,
Corollary (iv)], [53, p. 262]. For references to several other proofs given in the
literature, see [53, pp. 261–262].

When s = 0, Ramanujan’s claim takes the form

∞∑
k=1

k

e2πk − 1
=

1
24

− 1
8π

, (16.3.3)

where we have used the facts, ζ(−2) = 0, ζ(−1) = − 1
2B2 = − 1

12 , and ζ(0) =
−1

2 [271, p. 19]. Ramanujan posed (16.3.3) as a problem in the Journal of
the Indian Mathematical Society [238], [242, p. 326], [75, p. 240]. The identity
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(16.3.3) also appears as an example in Section 8 of Chapter 14 in his second
notebook [243], [53, p. 256]. To the best of our knowledge, the first appearance
of (16.3.3) in the literature is in a paper by O. Schlömilch [252] in 1877.
References to several other proofs can be found in [53, p. 256].

Putting s = 4n in (16.3.1), we find that

∞∑
k=1

k1−4n

e2kπ − 1
= S4n − 1

2
ζ(4n − 1) +

3
4π

ζ(4n) +
π

12
ζ(4n − 2). (16.3.4)

For the remaining six values, namely, n = 1, 2, 3, 4, 5, 6 in (16.3.4), we employ
the special case α = β = π of a famous identity for ζ(2n + 1), n ≥ 1, found in
Ramanujan’s second notebook [243], [53, pp. 275–276, Entry 21(i)]. Replacing
n by 2n + 1 in the aforementioned identity, we deduce that, for n ≥ 1,

1
2
ζ(4n−1)+

∞∑
k=1

k1−4n

e2πk − 1
= −24n−3π4n−1

2n∑
k=0

(−1)k B2k

(2k)!
B4n−2k

(4n − 2k)!
. (16.3.5)

This particular case of Ramanujan’s famous identity is due to M. Lerch in
1901 [202]. Using Euler’s famous formula

ζ(2n) =
(2π)2nB2n

2(2n)!
, n ≥ 1,

comparing (16.3.4) with (16.3.5), and dividing both sides of each identity by
π4n−1, we find that

S4n

π4n−1
= 3

24n−3B4n

(4n)!
− 24n−5B4n−2

3(4n − 2k)!
− 24n−3

2n∑
k=0

(−1)k B2k

(2k)!
B4n−2k

(4n − 2k)!
,

(16.3.6)
where n is any positive integer. Using Mathematica, we calculated the right-
hand side of (16.3.6) for n = 1, 2, 3, 4, 5, 6 and found that Ramanujan’s claims
in Entry 16.3.1 are correct for each of these six values of n. ��

The identities (16.3.2), (16.3.3), and (16.3.5) (and its aforementioned gen-
eralization) also appear in an incomplete handwritten manuscript published
with Ramanujan’s lost notebook [244, pp. 318–321] and examined by Berndt
[58]. This manuscript will also be examined in [33].

16.4 Some Elementary Identities

Entry 16.4.1 (p. 367). If s is a positive integer and Bn denotes the nth
Bernoulli number, then

(2s − 1)
Bs

2s
+

∞∑
k=1

ks−1qk

1 + (−q)k
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= 2s

{
Bs

2s
−

∞∑
k=1

ks−1q4k

1 − q4k

}
−
{

Bs

2s
−

∞∑
k=1

ks−1qk

1 − qk

}
(16.4.1)

and

(2s − 1)
Bs

2s
+

∞∑
k=1

ks−1qk

1 + (−q)k
= 2s

{
Bs

2s
+

∞∑
k=1

ks−1q4k

1 − q4k

}

+

{
Bs

2s
+

∞∑
k=1

ks−1qk

1 − qk

}
− 2

{
Bs

2s
+

∞∑
k=1

ks−1q2k

1 − q2k

}
. (16.4.2)

Proof. Canceling the expressions involving Bernoulli numbers, we find that
(16.4.1) is equivalent to the identity

∞∑
k=1

(2k)s−1q2k

1 + q2k
+

∞∑
k=0

(2k + 1)s−1q2k+1

1 − q2k+1

= −2s
∞∑

k=1

ks−1q4k

1 − q4k
+

∞∑
k=1

ks−1qk

1 − qk

= −2s−1
∞∑

k=1

ks−1q2k

1 − q2k
+ 2s−1

∞∑
k=1

ks−1q2k

1 + q2k
+

∞∑
k=1

ks−1qk

1 − qk
. (16.4.3)

Cancel the first sum on the far left-hand side with the second sum on the far
right-hand side above. If the even- and odd-indexed terms in the last sum on
the far right-hand side of (16.4.3) are separated, we see that the proposed
identity (16.4.3) is trivial.

To prove (16.4.2), we first cancel all expressions involving Bernoulli num-
bers. We then easily find that (16.4.2) is equivalent to the identity

∞∑
k=0

(2k + 1)s−1q2k+1

1 + q2k+1
+ 2s−1

∞∑
k=1

ks−1q2k

1 − q2k

= 2s−1
∞∑

k=1

ks−1q2k

1 − q2k
− 2s−1

∞∑
k=1

ks−1q2k

1 + q2k

+
∞∑

k=1

ks−1qk

1 − qk
− 2

∞∑
k=1

ks−1q2k

1 − q2k
. (16.4.4)

The second sum on the left-hand side cancels with the first sum on the right-
hand side in (16.4.4). Moving the second sum on the right-hand side to the
left-hand side, we find that (16.4.4) is equivalent to the identity

∞∑
k=1

ks−1qk

1 + qk
=

∞∑
k=1

ks−1qk

1 − qk
− 2

∞∑
k=1

ks−1q2k

1 − q2k
. (16.4.5)
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Using the elementary identity

x

1 + x
=

x

1 − x
− 2x2

1 − x2

above, we see that (16.4.5) is trivial, and so the proof of (16.4.2) is also
complete. ��
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For each page of Ramanujan’s lost notebook on which we have discussed or
proved entries in this book, we provide below a list of those entries. If (n)
appears after an entry, the entry has n parts.

Page 1

Entry 2.2.1, Entry 3.3.5, Entry 6.3.12

Page 2

Entry 6.3.7

Page 3

Entry 1.4.1, Entry 1.4.2, Entry 1.7.10, Entry 4.3.4, Entry 6.3.14

Page 4

Entry 3.6.4, Entry 3.6.5, Entry 5.4.3, Entry 6.3.11, Entry 6.3.16, Entry 6.4.6

Page 5

Entry 1.7.1, Entry 1.7.2, Entry 2.3.5, Entry 6.3.5

Page 6

Entry 3.4.1, Entry 3.4.3

Page 7

Entry 3.3.1, Entry 6.3.8
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Page 8

Entry 2.2.2, Entry 6.3.6

Page 10

Entry 1.4.9, Entry 1.4.10, Entry 1.4.11, Entry 1.4.12,
Entry 1.7.21, Entry 3.5.4(2), Entry 3.5.5(2), Entry 3.5.6(2)

Page 11

Entry 1.4.13, Entry 1.4.14, Entry 1.4.15, Entry 1.4.16

Page 12

Entry 1.4.3, Entry 1.4.4, Entry 6.6.1

Page 13

Entry 6.3.8

Page 14

Entry 3.4.1, Entry 3.4.2, Entry 3.4.4, Entry 3.4.5,
Entry 7.3.1, Entry 7.3.2, Entry 7.3.3

Page 15

Entry 1.4.5, Entry 3.4.7, Entry 3.4.8, Entry 5.4.4

Page 16

Entry 1.4.6, Entry 1.4.7, Entry 1.4.8, Entry 3.4.3

Page 21

Entry 6.5.3

Page 22

Entry 3.4.6

Page 24

Entry 3.6.1, Entry 3.6.2

Page 25

Entry 7.4.1(2)
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Page 26

Entry 1.5.3, Entry 1.5.4, Entry 1.7.19, Entry 4.3.1,
Entry 4.3.7, Entry 7.2.3, Entry 7.2.4

Page 27

Entry 1.4.18, Entry 3.6.3, Entry 4.3.9, Entry 7.2.1, Entry 7.2.2

Page 28

Entry 1.6.2, Entry 1.6.3, Entry 1.7.15, Entry 1.7.16, Entry 4.2.4,
Entry 4.2.5, Entry 4.3.3, Entry 4.3.5, Entry 4.3.6, Entry 4.3.8

Page 29

Entry 3.6.6, Entry 6.3.9, Entry 6.3.10, Entry 6.3.15

Page 30

Entry 1.4.17, Entry 1.7.3, Entry 6.3.13, Entry 7.2.5

Page 31

Entry 1.7.18, Entry 6.5.1, Entry 6.5.2

Page 33

Entry 5.3.1, Entry 5.3.2, Entry 5.3.3, Entry 5.3.4, Entry 5.3.5,
Entry 5.3.6, Entry 5.3.7, Entry 5.3.8, Entry 5.3.9, Entry 5.3.10

Page 34

Entry 1.7.4, Entry 1.7.14, Entry 2.3.2, Entry 4.2.8, Entry 4.2.9,
Entry 4.2.10, Entry 4.2.12, Entry 5.4.1, Entry 5.4.2

Page 35

Entry 1.6.6, Entry 1.7.5, Entry 1.7.6, Entry 1.7.7, Entry 1.7.8,
Entry 1.7.9, Entry 1.7.13, Entry 2.3.3, Entry 2.3.4, Entry 4.2.13

Page 36

Entry 3.5.3

Page 37

Entry 2.3.1(2), Entry 6.3.2, Entry 6.3.4

Page 38

Entry 1.6.4, Entry 1.6.5, Entry 6.4.1, Entry 6.4.2, Entry 6.4.3, Entry 6.4.4
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Page 39

Entry 6.4.5

Page 40

Entry 1.6.7, Entry 6.3.1, Entry 6.3.3

Page 41

Entry 1.7.11, Entry 1.7.12, Entry 4.2.1, Entry 4.2.2, Entry 4.2.6,
Entry 4.2.7, Entry 4.2.11, Entry 4.2.14, Entry 4.2.15, Entry 4.3.2

Page 42

Entry 1.5.1, Entry 1.5.2, Entry 2.2.3, Entry 2.2.4, Entry 4.2.3

Page 44

Entry 13.3.5(2)

Page 47

Entry 3.3.4(2)

Page 48

Entry 3.5.1, Entry 3.5.2, Entry 8.2.4(2)

Page 50

Entry 13.3.1(2)

Page 51

Entry 13.3.2(2) Entry 13.3.3, Entry 13.3.4

Page 53

Entry 13.5.1(2), Entry 13.5.2(2)

Page 54

Entry 8.2.1(4), Entry 8.2.2(4), Entry 8.2.3(2)

Page 57

Entry 1.7.17, Entry 1.7.20(2)

Pages 97–101

Entry 11.10.1, Entry 12.2.1, Entry 12.3.1
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Entry 11.5.1(2), Entry 11.10.3

Page 103

Entry 11.3.1, Entry 11.6.1

Page 104

Entry 11.11.1

Page 105

Entry 11.10.1

Page 114

Entry 11.10.1

Page 116

Entry 11.7.1(8)

Page 117

Entry 11.4.1, Entry 11.7.1(8), Entry 11.8.1, Entry 11.9.1(3)

Page 118

Entry 11.9.1(3)

Page 119

Entry 11.10.1, Entry 11.10.2

Page 123

Entry 11.10.1

Page 188

Entry 14.2.1(6), Entry 14.2.2

Page 202

Entry 4.2.16

Page 206

Entry 8.3.1(4)
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Page 207

Entry 3.1.1

Page 209

Entry 10.1.1

Page 211

Entry 15.2.1(8), Entry 15.3.1(8)

Page 212

Entry 9.1.1(21)

Page 268

Entry 1.3.1

Page 269

Entry 1.3.1

Page 312

Entry 3.3.3

Page 330

Entry 10.4.1, Entry 10.4.2(3)

Page 334

Entry 16.3.1(8)

Page 342

Entry 10.7.1

Page 346

Entry 10.5.1, Entry 10.5.2

Page 362

Entry 1.6.1

Page 367

Entry 16.2.1(6), Entry 16.4.1(2)

Page 369

Entry 14.3.1, Entry 14.3.2(6), Entry 14.3.3

Page 370

Entry 1.3.2, Entry 3.3.2, Entry 10.6.1, Entry 15.6.1, Entry 15.6.2, Entry 15.6.3



Provenance

Chapter 1

G.E. Andrews, [6]
G.E. Andrews, [7]
G.E. Andrews, [9]
B.C. Berndt and A.J. Yee, [79]
Padmavathamma, [225]

Chapter 2

None

Chapter 3

None

Chapter 4

A.V. Sills, [261]

Chapter 5

G.E. Andrews, [22]
Padmavathamma, [225]

Chapter 6

R.P. Agarwal, [4]
G.E. Andrews, [21]
G.E. Andrews, [28]
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S.O. Warnaar, [273]

Chapter 7

G.E. Andrews, [20]
G.E. Andrews, [25]
G.E. Andrews, J. Jiménez-Urroz, and K. Ono, [36]

Chapter 8

S.H. Son, [266]
S.H. Son, [267]

Chapter 9

B.C. Berndt, H.H. Chan, S.-Y. Kang, and L.-C. Zhang, [65]
H.H. Chan, A. Gee, and V. Tan, [107]

Chapter 10

B.C. Berndt, H.H. Chan, and A. Zaharescu, [68]
E. Krätzel, [195]

Chapter 11

B.C. Berndt and P.R. Bialek, [61]
B.C. Berndt, P.R. Bialek, and A.J. Yee, [62]

Chapter 12

P.R. Bialek, [84]

Chapter 13

B.C. Berndt, H.H. Chan, J. Sohn, and S.H. Son, [67]
S. Raghavan and S.S. Rangachari, [233]

Chapter 14

B.C. Berndt and A.J. Yee, [77]
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Chapter 15

N.D. Baruah and B.C. Berndt, [45]
B.C. Berndt and H.H. Chan, [64]

Chapter 16

None
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